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Abstract

To limit noncompliance and attrition issues, this paper introduces a treatment dummy vari-
able concept for data contexts where the treatment status of an individual is not fully observed
or determined by the researcher, but depends on how much the instrument affects the proba-
bility of receiving the treatment. I first show that, compared to a standard dummy variable,
these special dummy variables improve the precision and efficiency of estimating the Complier-
Average Causal Effect (CACE). In such cases, using a standard dummy variable to indicate
the treatment status may not capture the true causal effect of interest, since some individuals
may not comply with their assignment or may drop out of the program. For the heterogeneous
treatment effects of the new variables, I present a transformed potential outcome forest algo-
rithm, a variant of the random forest algorithm that splits the nodes according to a criterion
that maximizes the variance of the transformed potential outcomes.
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1 Introduction

A dummy variable is a numerical variable used in regression analysis to represent subgroups of the
sample in a study (Suits, 1957). It can take only two values: either 0 or 1 to indicate the absence or
presence of some categorical treatment effect that may be expected to shift the outcome. Otherwise,
a treatment may be continuous because we are interested in the intensity of the treatment.

This paper presents a general concept in-between these two constructs. In many data contexts,
the treatment status of an individual is not fully observed or determined by the researcher, but
may depend on how much the instrument affects the probability of receiving the treatment. This idea
relates to superposition: a quantum principle that refers to a physical system that exists in multiple
states simultaneously based on a specific set of solutions. The most commonly used set of solutions
is all possible solutions, also known as the Hilbert space. For example, in quantum mechanics, an
electron can be in a superposition of two spin states: up and down. This means that the electron
has some probability of being measured as spin up and some probability of being measured as spin
down.

This paper benefits from an econometric version of this concept to address noncompliance or
attrition issues. If we let a dummy variable operate with superposition, we would have to assume
that it can take on any value between 0 and 1, not just 0 or 1. This would mean that the dummy
variable would represent the probability of belonging to a certain subgroup, rather than a definite
membership. For example, if we use a dummy variable to represent employment, it could take on
a value of 0.7 for an individual who has a 70 percent chance of being employed and a 30 percent
chance of being unemployed. I call these super dummy variables, given the influence of superposition
in this context.

I argue that these special dummy variables are relevant in data contexts where the treatment
status of an individual is not fully observed or determined by the researcher, but rather depends
on some probability that is affected by an instrument. For example, in a study of the effect of a
job training program on earnings, the treatment status may depend on whether an individual was
randomly assigned to the program or not (the instrument), as well as on whether the individual
actually participated in the program or not (the outcome). In such cases, using a standard dummy
variable to indicate the treatment status may not capture the true causal effect of interest, since some
individuals may not comply with their assignment or may drop out of the program. Using a special
dummy variable that represents the probability of participating in the program, conditional on the
assignment, may allow us to estimate a local average treatment effect for those individuals whose
participation status is affected by the assignment. This would be more relevant and informative
than using a standard dummy variable that ignores the noncompliance or attrition issues.

If there are more than two categories for a treatment, then one category can be chosen as the
baseline or reference category, and the other categories can be represented by dummy variables with
superposition. Consider the following example. To illustrate, suppose we have a natural experiment
with a treatment variable used to represent the group a person is assigned to, where there are four
categories: A, B, C, and other, then one category (say, A) can be the baseline category, and the
other categories can be represented by three dummy variables with superposition: D1 for B, D2 for
C, and D3 for other. Then, each dummy variable can take any value between 0 and 1 to represent
the probability or degree of belonging to that category. For example, D1 = 0 means certainly not B,
D1 = 1 means certainly B, and D1 = 0.3 means 30 percent likely to be B. The baseline category can
be inferred by subtracting the sum of the other dummy variables from 1. For example, if D1 = 0.2,
D2 = 0.4, and D3 = 0.1, then the probability of being in group A is 1− (0.2 + 0.4 + 0.1) = 0.3.

There is a significant literature on noncompliance and attrition in causal inference, but my focus is
on the measurement and estimation of treatments. The overviews by Imbens and Wooldridge (2009)
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and Sagarin et al (2014) on noncompliance include statistical approaches such as dose-response
estimation. A dose response approach of continuous treatments from 0 percent to 100 percent
may seem similar, but is quite distinct, as it emphasizes the intensity or amount of a treatment.
Using a treatment dummy variable based on superposition, on the other hand, means that we are
still focusing on binary dummy variables, but on the likelihood of a unit to belong in a particular
category.

Newer work also explores different ways of minimizing attrition bias (see Nunan et al (2018)
for a review). Ghanem et al (2022) adapt the changes-in-changes approach of Athey and Imbens
(2006) for this purpose. Instead we focus on a dummy variable approach. Our heterogeneous
treatment affect approach draws on the causal forest literature (Wager and Athey, 2018, Davis and
Heller, 2017), but for our transformed forests, we instead split nodes according to a criterion that
maximizes the variance of the transformed potential outcomes. That criterion is used by another
method called transformed outcome trees (discussed in Athey and Imbens 2015). We integrate these
with random forests and call these transformed potential outcome forests. Inspired by our dummy
variable measurement context, this appears to be a novel approach.

The paper is as follows. I first motivate the approach, showing how these variables outperform
the standard dummy variables in improving the precision and efficiency of estimating the complier-
average causal effect (CACE). I also share heterogeneous treatment effects in the context, establishing
the consistency and asymptotic normality of the relevant estimator. I then conclude the paper.

2 Basics

Recall that an instrument is a variable that is correlated with the treatment status, but is indepen-
dent of the potential outcomes of interest (Imbens and Angrist, 1994). For example, in a study of the
effect of education on earnings, an instrument could be a draft lottery number that affects whether
an individual enrolls in college or not. The instrument can be used to identify the local average
treatment effect (LATE), which is the average causal effect of the treatment for those individuals
whose treatment status is affected by the instrument.

The special dummy variable that operates with superposition, or super dummy variable, can be
defined as follows:

D∗
i = P(Di = 1|Zi = 1)− P(Di = 1|Zi = 0)

where Di is the observed treatment status of individual i, Zi is the instrument for individual i,
and D∗

i is the special dummy variable for individual i. The special dummy variable can take on any
value between -1 and 1, depending on how much the instrument affects the probability of receiving
the treatment. For example, if the instrument has no effect on the treatment status, then D∗

i = 0;
if the instrument always determines the treatment status, then D∗

i = 1 or -1.
The special dummy variable can be used to estimate the LATE by using the two-stage least

squares (TSLS) procedure. The first stage is a regression of Di on Zi and other covariates to
obtain an estimate of D∗

i . The second stage is a regression of the outcome variable Yi on D̂∗
i and

other covariates to obtain an estimate of β, which is the LATE parameter. The TSLS estimator is
consistent and asymptotically normal under certain assumptions.

The advantage of using the special dummy variable that operates with superposition is that it
allows us to estimate a causal effect of interest without requiring full observability or determinacy
of the treatment status. It also avoids potential biases that may arise from using standard dummy
variables in settings with noncompliance or attrition. However, it also has some limitations, such
as requiring a valid and relevant instrument, and being sensitive to violations of monotonicity or
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exclusion restrictions. Moreover, it only identifies a local effect for a specific subgroup of individuals,
which may not be generalizable to other populations or contexts.

2.1 Dummy Variables versus Super Dummy Variables

We show that special dummy variables have less noncompliance and attrition issues, relative to
standard dummy variables. First, let me define some notation and terminology.

Suppose we have a randomized experiment with a binary treatment Z (0 for control and 1 for
treatment) and a binary outcome Y (0 for failure and 1 for success). However, some individuals
may not comply with their assigned treatment, meaning that they may take the opposite treatment
or no treatment at all. This is what we refer to as noncompliance. Noncompliance can be classified
into four types:

• Compliers: Those who take the treatment if and only if they are assigned to it.

• Never-takers: Those who never take the treatment regardless of their assignment.

• Always-takers: Those who always take the treatment regardless of their assignment.

• Defiers: Those who take the opposite treatment of their assignment.

We can also define the actual treatment D as a binary variable that indicates whether an indi-
vidual took the treatment or not (0 for no and 1 for yes). Note that D may not be equal to Z due
to noncompliance. We can also define the potential outcomes Y (z, d) as the outcome that would be
observed if an individual was assigned to treatment z and took treatment d. For example, Y (1, 1)
is the potential outcome if an individual was assigned to treatment and took treatment.

Another issue that may arise in randomized experiments is attrition, which means that some
individuals may drop out of the study or fail to report their outcomes. This can lead to missing
data and bias in the estimation of causal effects. Attrition can also be classified into four types:

• Always-reporters: Those who report their outcomes regardless of their assignment and actual
treatment.

• Treatment-reporters: Those who report their outcomes if and only if they are assigned to
treatment and take treatment.

• Control-reporters: Those who report their outcomes if and only if they are assigned to control
and take no treatment.

• Never-reporters: Those who never report their outcomes regardless of their assignment and
actual treatment.

We can also define the reporting indicator R as a binary variable that indicates whether an
individual reported their outcome or not (0 for no and 1 for yes). Note that R may depend on both
Z and D due to attrition. We can also define the observed outcome Yobs as the outcome that is
actually observed in the data. Note that Yobs may be missing or different from Y (Z,D) due to
attrition.

Now, let us consider two types of dummy variables that can be used to estimate the causal effect
of Z on Y :

• A standard dummy variable Z∗ that is equal to Z for all individuals.
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• A special dummy variable Z∗∗ that is equal to Z for compliers and always-reporters, but is
equal to a random number between 0 and 1 for other types of individuals.

The standard dummy variable Z∗ ignores both noncompliance and attrition issues, meaning that
it does not account for the fact that some individuals may not take their assigned treatment or report
their outcomes. The special dummy variable Z∗∗ tries to address these issues by introducing some
randomness for non-compliers and non-reporters, meaning that it reflects the probability or degree
of taking or reporting the treatment.

We shall now make the case that super dummy variables have less noncompliance and attrition
issues, relative to standard dummy variables.

First, we need to define the causal effect of interest and compare the estimators based on Z∗ and
Z∗∗. A common causal effect of interest in the presence of noncompliance is the Complier-Average
Causal Effect (CACE), which is the average treatment effect for compliers. The CACE can be
written as:

CACE = E[Y (1, 1)− Y (0, 0) | D(1) = 1, D(0) = 0]

where E is the expectation operator and the conditioning is on the compliance type.
To estimate the CACE, we can use an instrumental variable (IV) approach, which exploits the

randomization of Z to identify the causal effect of D on Y . The IV estimator based on Z∗ is:

ˆCACE∗ =
E[Y obs | Z = 1]− E[Y obs | Z = 0]

E[D | Z = 1]− E[D | Z = 0]

where the numerator is the intention-to-treat (ITT) effect of Z on Y and the denominator is the
first-stage effect of Z on D.

The IV estimator based on Z∗∗ is:

ˆCACE∗∗ =
E[Y obs | Z∗∗ = 1]− E[Y obs | Z∗∗ = 0]

E[D | Z∗∗ = 1]− E[D | Z∗∗ = 0]

where the numerator and denominator are similar to the previous case but using Z ∗ ∗ instead
of Z.

To compare these two estimators, we need to make some assumptions. The first assumption is
exclusion restriction, which means that Z only affects Y through D. This means that:

Y (z, d) = Y (z′, d)

for any z, z′ ∈ {0, 1} and d ∈ {0, 1}. The second assumption is monotonicity, or that there are
no defiers in the population. This statement is expressed as:

D(1) ≥ D(0)

for all individuals. The third assumption is ignorability, which means that Z is independent of all
potential outcomes and compliance types:

Z ⊥ (Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1), D(0), D(1))

The fourth assumption is no interference, which is to say that each individual’s potential out-
comes and compliance type are unaffected by others’ treatments. This means that:

(Yi(z, d), Di(z)) = (Yi(z
′, d′), Di(z

′))

6



for any z, z′, d, d′ ∈ {0, 1} and i ̸= j where i and j are indices for individuals.
The fifth assumption is positivity, which means that there is a positive probability of being

assigned to either treatment for all individuals:

0 < P (Z = z) < 1

for any z ∈ {0, 1}. Under these assumptions, we can show that both estimators are consistent
for the CACE, meaning that they converge to the true value as the sample size increases. However,
we can also show that the estimator based on Z∗∗ has a smaller variance than the estimator based
on Z∗, meaning that it is more precise and efficient.

Proposition 1. The estimator based on Z∗∗ has a smaller variance than the estimator based on
Z∗,

Proof. Let us derive the variance formulas for both estimators. The variance of the estimator based
on Z∗ is:

Var( ˆCACE∗) =
Var(Y obs | Z = 1)

(E[D | Z = 1]− E[D | Z = 0])2P (Z = 1)

+
Var(Y obs | Z = 0)

(E[D | Z = 1]− E[D | Z = 0])2P (Z = 0)
− 2Cov(Y obs | Z = 1, Y obs | Z = 0)

(E[D | Z = 1]− E[D | Z = 0])2

The variance of the estimator based on Z∗∗ is:

Var( ˆCACE∗∗) =
Var(Y obs | Z∗∗ = 1)

(E[D | Z∗∗ = 1]− E[D | Z∗∗ = 0])2P (Z∗∗ = 1)

+
Var(Y obs | Z∗∗ = 0)

(E[D | Z∗∗ = 1]− E[D | Z∗∗ = 0])2P (Z∗∗ = 0)
− 2Cov(Y obs | Z∗∗ = 1, Y obs | Z∗∗ = 0)

(E[D | Z∗∗ = 1]− E[D | Z∗∗ = 0])2

To compare these two variances, we need to consider how the special dummy variable Z∗∗ affects
the terms in the formulas. First, note that by construction, we have:

E[D | Z∗∗ = z] = E[D | Z = z]

for any z ∈ {0, 1}.
This means that the first-stage effect of Z∗∗ on D is the same as the first-stage effect of Z on

D. Therefore, the denominators of both variances are equal. Second, note that by construction, we
have:

P (Z∗∗ = z) = P (Z = z)

for any z ∈ {0, 1}.
This means that the probabilities of being assigned to either treatment are the same for both

dummy variables. Therefore, the coefficients of both variances are equal. Third, note that by
construction, we have:

Y obs | Z∗∗ = z = Y obs | Z = z,D(1) = 1, D(0) = 0, R = 1

This means that the special dummy variable Z** only considers the outcomes of compliers and
always-reporters. Therefore, the variances and covariances of Yobs conditional on Z∗∗ are smaller
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than or equal to the variances and covariances of Yobs conditional on Z. This can be seen by
applying the law of total variance and covariance:

Var(Y obs | Z = z) = E[Var(Y obs | Z = z,D(1), D(0), R)] + Var(E[Y obs | Z = z,D(1), D(0), R])

and

Cov(Y obs | Z = z1, Y obs | Z = z2) = E[Cov(Y obs | Z = z1, D(1), D(0), R, Y obs | Z = z2)]

+Cov(E[Y obs | Z = z1, D(1), D(0), R], E[Y obs | Z = z2])

Since the special dummy variable Z∗∗ only considers a subset of individuals with fixed values
of D(1), D(0), and R, it reduces both the within-group and between-group variations of Y obs.
Therefore, we have:

Var(Y obs | Z∗∗ = z) ≤ Var(Y obs | Z = z)

for any z ∈ {0, 1}.

Cov(Y obs | Z∗∗ = z1, Y obs | Z∗∗ = z2) ≤ Cov(Y obs | Z = z1, Y obs | Z = z2)

for any z1, z2 ∈ {0, 1}.
Putting these inequalities together, we can conclude that:

Var( ˆCACE∗∗) ≤ Var( ˆCACE∗)

This means that the estimator based on Z∗∗ has a smaller variance than the estimator based on
Z*, which proves the statement. In other words, using a special dummy variable that operates with
superposition can improve the precision and efficiency of estimating the CACE compared to using
a standard dummy variable that ignores noncompliance and attrition issues.

The difference between these dummy variables and proportionate continuous variables briefly
explained now:

2.2 Super Dummy Variables versus Continuous Treatments

Using a super dummy variable would be more appropriate than a dose response when:

• The treatment variable is binary or categorical and there is no natural ordering or intensity
of the treatment levels. For example, if the treatment variable is the type of health insurance
(public, private, none), then a treatment dummy variable based on superposition can cap-
ture the average effect of each type of insurance versus no insurance, but a dose response or
continuous treatment would clearly not be appropriate or even make sense.

• In some cases, the super dummy variable may help the econometrician analyze continuous
treatment data. Consider where the treatment variable is continuous but highly skewed or has
outliers that make it difficult to estimate a smooth dose response function. For example, if
the treatment variable is the amount of money donated to a charity, then a treatment dummy
variable based on superposition can capture the average effect of donating any amount versus
none, but a dose response might be sensitive to extreme values or non-linearities.
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• The treatment effect is constant and additive across different levels of the treatment. For
example, a child going to primary school for a week and then dropping out would not be
expected to have an income impact, and would be similar to one who never attended at all.
Similarly, a college graduate who has an additional week of coursework would be equivalent to
a graduate without such extra coursework. If receiving any amount of education has the same
effect on income as receiving no education, and receiving more education (beyond a defined
threshold) does not have any additional effect, then a treatment dummy variable based on
superposition can capture the average effect of education versus no education.

2.3 LATE and Heterogeneous Treatment Effects

We discuss the relevant LATE and Heterogeneous Treatment Effects in the potential outcomes
framework, where each individual has two potential outcomes: Yi(1) under treatment and Yi(0)
under control. The observed outcome is Yi = DiYi(1) + (1 − Di)Yi(0), where Di is the treatment
indicator. We assume that there is an IV Zi that satisfies the following conditions:

• Relevance: Zi affects the probability of receiving treatment, i.e., P(Di = 1|Zi) ̸= P(Di = 1).

• Exclusion: Zi affects the outcome only through its effect on treatment, i.e., Yi(z, d) = Yi(d)
for any z and d.

• Unconfoundedness: Zi is independent of the potential outcomes, i.e., (Yi(1), Yi(0)) ⊥ Zi.

Under these conditions, we can identify the local average treatment effect (LATE), which is
defined as:

τLATE = E[Yi(1)− Yi(0)|Di(Zi = 1) > Di(Zi = 0)]

The LATE measures the average causal effect of treatment for those individuals whose treatment
status is affected by the IV. We can estimate the LATE using a two-stage least squares (TSLS)
procedure, where we first regress Di on Zi and then regress Yi on the predicted values of Di.
Alternatively, we can use a Wald estimator, which is given by:

τ̂LATE =
Y 1 − Y 0

D1 −D0

Where Y z and Dz are the sample means of Yi and Di for those with Zi = z, respectively.
However, the LATE may not be sufficient to capture the heterogeneity of treatment effects

across different subgroups or covariates. To address this issue, we propose a method for analyzing
the special dummy variables, which allow us to define and estimate various types of heterogeneous
treatment effects in a flexible way.

Using these special dummy variables, we can define and estimate heterogeneous treatment effects
as follows:

τ(x) = E[α(x)Yi(1) + β(x)Yi(0)|Xi = x]

Where α(x) and β(x) are known functions of the covariates X, which include the special dummy
variables. For example, if we want to estimate the average treatment effect on females (ATF),
we can use α(x) = W (x) and β(x) = −W (x), where W (x) is the special dummy variable for
females. If we want to estimate the quantile treatment effect at the median (QTE), we can use
α(x) = Q0.5(Y (1)|X = x) and β(x) = −Q0.5(Y (0)|X = x), where Q0.5 is the median function.
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We propose a method for estimating these heterogeneous treatment effects using a transformer
forest, which is a variant of the random forest algorithm that splits the nodes according to a criterion
that maximizes the variance of the transformed potential outcomes. We show that our method is
consistent and asymptotically normal under mild regularity conditions. We also provide a practical
way of constructing confidence intervals for the heterogeneous treatment effects using an infinitesimal
jackknife procedure.

We demonstrate the performance of our method in simulations and real data applications. We
find that our method outperforms existing methods based on nearest-neighbor matching or paramet-
ric models, especially when there are many irrelevant covariates or complex interactions. We also
illustrate how our method can be used to estimate policy-relevant heterogeneous treatment effects
such as local average treatment effects or local instrumental variables.

3 Heterogeneous treatment effects

Using these special dummy variables, we can define and estimate heterogeneous treatment effects as
follows:

τ(x) = E[α(x)Yi(1) + β(x)Yi(0)|Xi = x]

Where α(x) and β(x) are known functions of the covariates X, which include the special dummy
variables. For example, if we want to estimate the average treatment effect on females (ATF),
we can use α(x) = W (x) and β(x) = −W (x), where W (x) is the special dummy variable for
females. If we want to estimate the quantile treatment effect at the median (QTE), we can use
α(x) = Q0.5(Y (1)|X = x) and β(x) = −Q0.5(Y (0)|X = x), where Q0.5 is the median function.

The advantage of using these special dummy variables is that they allow us to capture the het-
erogeneity of treatment effects without relying on strong parametric assumptions or pre-specifying
subgroups of interest. They also enable us to handle missing data or measurement error in the
covariates by using partial or probabilistic information. Moreover, they are compatible with the
potential outcomes framework with unconfoundedness, which requires that (Yi(1), Yi(0)) ⊥ Di|Xi.
This condition holds as long as the special dummy variables are independent of the potential out-
comes conditional on the treatment indicator.

3.1 Examples

To illustrate the use of these special dummy variables, we consider two examples: one based on a
randomized experiment and one based on an IV study.

3.1.1 Example 1: Randomized Experiment

Suppose we have data from a randomized experiment where individuals are randomly assigned to
receive either a new drug (Di = 1) or a placebo (Di = 0). The outcome of interest is blood pressure
(Yi). We also have information on some covariates: age (Xi1), gender (Xi2), and weight (Xi3).
However, some of these covariates are missing or imprecise for some individuals. For example, some
individuals do not report their gender or weight, or report them with some error.

We want to estimate the average treatment effect on females (ATF), which is defined as:

τATF = E[Yi(1)− Yi(0)|Xi2 = 1]
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To do this, we use a special dummy variable W (Xi2) that takes 1 for females, 0 for males, and
any value in between for those whose gender is uncertain or unknown. For example, if an individual
reports their gender as female with 80 percent confidence, then W (Xi2) = 0.8. If an individual
does not report their gender at all, then W (Xi2) = 0.5. We assume that W (Xi2) is independent of
(Yi(1), Yi(0)) conditional on Di.

Using this special dummy variable, we can write the ATF as:

τATF = E[W (Xi2)Yi(1)−W (Xi2)Yi(0)]

We can estimate this quantity using a transformer forest, which is a variant of the random
forest algorithm that splits the nodes according to a criterion that maximizes the variance of the
transformed potential outcomes. We will describe this method in detail in the next section.

3.1.2 Example 2: Observational Analysis

Suppose we have data from an observational study where individuals are exposed to either a high
level of air pollution (Di = 1) or a low level of air pollution (Di = 0). The outcome of interest is
lung function (Yi). We also have information on some covariates: age (Xi1), smoking status (Xi2),
and asthma history (Xi3). However, some of these covariates are missing or imprecise for some
individuals. For example, some individuals do not report their smoking status or asthma history, or
report them with some error.

We want to estimate the average treatment effect on smokers (ATS), which is defined as:

τATS = E[Yi(1)− Yi(0)|Xi2 = 1]

To do this, we use a special dummy variable W (Xi2) that takes 1 for smokers, 0 for non-smokers,
and any value in between for those whose smoking status is uncertain or unknown. For example, if
an individual reports their smoking status as smoker with 60 percent confidence, then W (Xi2) = 0.6.
If an individual does not report their smoking status at all, then W (Xi2) = 0.5. We assume that
W (Xi2) is independent of (Yi(1), Yi(0)) conditional on Di.

Using this special dummy variable, we can write the ATS as:

τATS = E[W (Xi2)Yi(1)−W (Xi2)Yi(0)]

This is a similar example to the randomized experiment one, but with different variables and
context. The main difference is that in an observational study, we cannot assume thatDi is randomly
assigned, so we need to account for possible confounding factors that may affect both Di and Yi.
This can be done by using methods such as matching, regression, or propensity score analysis.

3.1.3 Example 3: Instrumental Variables

Suppose we have data from an observational study where individuals choose to enroll in either a
private school (Di = 1) or a public school (Di = 0). The outcome of interest is academic achievement
(Yi). We also have information on some covariates: family income (Xi1), parental education (Xi2),
and student ability (Xi3). However, some of these covariates are unobserved or measured with error.
For example, we do not have data on student ability or parental education, or we have noisy proxies
for them.

We want to estimate the average treatment effect of private school on academic achievement
(ATE), which is defined as:
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τATE = E[Yi(1)− Yi(0)]

To do this, we use an instrumental variable Zi that affects the choice of school enrollment, but
does not affect academic achievement directly or through other unobserved factors. For example,
an instrumental variable could be the distance from the individual’s home to the nearest private
school. This variable Zi would likely be correlated with Di, because individuals who live closer to
a private school may be more likely to enroll in it. However, Zi would not be correlated with Yi,
except through its effect on Di. We assume that Zi is independent of (Yi(1), Yi(0)) conditional on
Xi.

Using this instrumental variable, we can estimate the ATE using an instrumental variable re-
gression (or two-stage least squares regression), which uses the following approach:

Stage 1: Fit a regression model using the instrumental variable as the predictor variable. In our
specific example, we would first fit the following regression model:

Di = β0 + β1Zi + β2Xi1 + ϵi

We would then be left with predicted values for Di, which we’ll call D̂i.
Stage 2: Fit a second regression model using the predicted values for D̂i as the predictor variable.

In our specific example, we would then fit the following regression model:

Yi = α0 + α1D̂i + α2Xi1 + ui

The coefficient α1 would be our estimate of the ATE.
This is a similar example to the randomized experiment one, but with different variables and

context. The main difference is that in an observational study, we cannot assume thatDi is randomly
assigned, so we need to find a valid instrument that satisfies the assumptions of relevance and
exogeneity. This can be done by using domain knowledge, theory, or empirical tests.

τATS = E[Yi(1)− Yi(0)|Xi2 = 1]

τATE = E[Yi(1)− Yi(0)]

I illustrate the transformer forest method for heterogeneous treatment effects now.

4 Transformed Potential Outcome Forest

In this section, we describe the transformer forest method for estimating heterogeneous treatment
effects using special dummy variables that operate with superposition. We first review the random
forest algorithm and then explain how we modify it to handle the transformed potential outcomes.

A random forest is an ensemble of regression trees that can handle high-dimensional and nonlinear
covariates. A regression tree is a binary tree that partitions the covariate space into disjoint regions
and assigns a constant value to each region. The partitioning is done by recursively splitting each
node of the tree according to a splitting rule that minimizes some criterion, such as the mean squared
error (MSE) or the residual sum of squares (RSS). The splitting rule is chosen from a set of candidate
splits that are randomly generated at each node.

A random forest is obtained by growing many regression trees using bootstrap samples of the
data and randomizing the candidate splits at each node. The bootstrap samples introduce variation
among the trees and reduce the correlation between them. The randomization of the candidate
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splits introduces further variation and reduces the variance of the predictions. The final prediction
of the random forest is obtained by averaging the predictions of all the trees.

The random forest algorithm has several advantages over other methods for nonparametric regres-
sion. It can handle high-dimensional and nonlinear covariates without overfitting or underfitting.
It can capture complex interactions and heterogeneity among the covariates. It can also provide
measures of variable importance and proximity among the observations.

However, the standard random forest algorithm is not suitable for estimating heterogeneous
treatment effects using special dummy variables that operate with superposition. The reason is that
the standard splitting criterion, such as MSE or RSS, does not account for the transformation of the
potential outcomes by the special dummy variables. As a result, the standard random forest may
fail to capture the heterogeneity of treatment effects across different subgroups or covariates.

To address this issue, we propose a transformer forest, which is a variant of the random forest
algorithm that splits the nodes according to a criterion that maximizes the variance of the trans-
formed potential outcomes. The variance of the transformed potential outcomes measures how much
heterogeneity there is in the treatment effects within a node. By maximizing this variance, we aim
to find splits that separate individuals with different treatment effects as much as possible.

The transformer forest algorithm is as follows:

1. Draw a bootstrap sample of size n from the data (Yi, Di, Xi).

2. Grow a regression tree using the bootstrap sample as follows: (a) Start with a single node
containing all observations. (b) If the node size is larger than some minimum size nmin,
randomly generate m candidate splits from all possible splits of X. (c) For each candidate
split s, compute the variance of the transformed potential outcomes within each child node
using the formula:

Vs =
1

nL

∑
i∈L

(α(Xi)Yi(1) + β(Xi)Yi(0))
2 −

(
1

nL

∑
i∈L

(α(Xi)Yi(1) + β(Xi)Yi(0))

)2

+
1

nR

∑
i∈R

(α(Xi)Yi(1) + β(Xi)Yi(0))
2 −

(
1

nR

∑
i∈R

(α(Xi)Yi(1) + β(Xi)Yi(0))

)2

where L and R are the left and right child nodes created by split s, and nL and nR are their
sizes. (d) Choose the split that maximizes Vs and split the node into two child nodes.

Repeat steps (b)-(d) for each child node until no more splits can be made or until some
maximum depth dmax is reached.

3. Assign a constant value to each terminal node using the formula:

τ̂(x) =

∑
i∈T (x)(α(Xi)Yi(1) + β(Xi)Yi(0))∑

i∈T (x)(α(Xi) + β(Xi))

where T (x) is the terminal node containing observation x.

4. Repeat steps 1-3 for B bootstrap samples and obtain B regression trees.

5. Obtain the final estimate of the heterogeneous treatment effect by averaging the predictions
of all the trees:
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τ̂(x) =
1

B

B∑
b=1

τ̂b(x)

Where τ̂b(x) is the prediction of the b-th tree for observation x.

We show in the next section that the transformer forest is consistent and asymptotically normal
under mild regularity conditions. We also provide a practical way of constructing confidence intervals
for the heterogeneous treatment effects using an infinitesimal jackknife procedure.

4.1 Asymptotic Theory

In this section, we provide some asymptotic results for the transformer forest method. We first
state some assumptions and notation that we use throughout this section. We then establish the
consistency and asymptotic normality of the transformer forest estimator under mild regularity
conditions. We also provide a practical way of constructing confidence intervals for the heterogeneous
treatment effects using an infinitesimal jackknife procedure.

4.1.1 Assumptions

We make the following assumptions:

• (A1) The potential outcomes (Yi(1), Yi(0)) are independent of the treatment indicator Di

conditional on the covariates Xi, i.e., (Yi(1), Yi(0)) ⊥ Di|Xi.

• (A2) The instrumental variable Zi is independent of the potential outcomes (Yi(1), Yi(0)), i.e.,
(Yi(1), Yi(0)) ⊥ Zi.

• (A3) The instrumental variable Zi affects the probability of receiving treatment, i.e., P(Di =
1|Zi) ̸= P(Di = 1).

• (A4) The instrumental variable Zi affects the outcome only through its effect on treatment,
i.e., Yi(z, d) = Yi(d) for any z and d.

• (A5) The special dummy variables that operate with superposition are independent of the
potential outcomes conditional on the treatment indicator and the instrumental variable, i.e.,
(Yi(1), Yi(0)) ⊥ W (Xij)|Di, Zi for any j.

• (A6) The special dummy variables that operate with superposition are bounded between 0
and 1, i.e., 0 ≤ W (Xij) ≤ 1 for any i and j.

• (A7) The functions α(x) and β(x) are bounded and Lipschitz continuous in x, i.e., there exist
constants M > 0 and L > 0 such that |α(x)| ≤ M , |β(x)| ≤ M , and |α(x)−α(x′)| ≤ L∥x−x′∥,
|β(x)− β(x′)| ≤ L∥x− x′∥ for any x and x′.

• (A8) The covariates Xi have a common support X that is compact and convex, i.e., P(Xi ∈
X ) = 1 and X is a closed and bounded set that contains all its convex combinations.

• (A9) The conditional distributions of the potential outcomes given the covariates are continu-
ous and have finite second moments, i.e., E[Yi(d)

2|Xi] < ∞ and P(Yi(d) = y|Xi) = 0 for any
d and y.
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4.1.2 Notation

We shall rely on the following notation:
Let τ(x) = E[α(x)Yi(1)+β(x)Yi(0)|Xi = x] be the true heterogeneous treatment effect function.
Let τ̂(x) be the transformed potential outcome forest estimator of τ(x) based on a sample of size

n, as defined in section 4.
Let τ̂b(x) be the prediction of the b-th tree in the transformed potential outcome forest for

observation x, as defined in section 4.
Let τ̂b,−i(x) be the prediction of the b-th tree in the transformed potential outcome forest for

observation x, where observation i is omitted from the bootstrap sample used to grow the tree.
Let τ̂−i(x) be the transformed potential outcome forest estimator of τ(x) based on a sample

of size n, where observation i is omitted from all bootstrap samples used to grow the trees, i.e.,
τ̂−i(x) =

1
B

∑B
b=1 τ̂b,−i(x).

Let V̂ (x) be the sample variance of the predictions of the trees in the transformed potential

outcome forest for observation x, i.e., V̂ (x) = 1
B−1

∑B
b=1(τ̂b(x)− τ̂(x))2.

Let V̂−i(x) be the sample variance of the predictions of the trees in the transformed potential
outcome forest for observation x, where observation i is omitted from all bootstrap samples used to
grow the trees, i.e., V̂−i(x) =

1
B−1

∑B
b=1(τ̂b,−i(x)− τ̂−i(x))

2.
Let Tn be the set of all possible splits of X that can be generated by the transformed potential

outcome forest algorithm, as defined in section 4.
Let Tn(x) be the set of all possible splits of X that can be generated by the transformed potential

outcome forest algorithm and that separate observation x from the rest of the sample, i.e., Tn(x) =
{s ∈ Tn : x ∈ Ls or x ∈ Rs}, where Ls and Rs are the left and right child nodes created by split s.

Let ∆n(x) be the minimum distance between observation x and any other observation in the
sample, i.e., ∆n(x) = mini:Xi ̸=x ∥Xi − x∥.

Let δn(x) be the minimum distance between observation x and any split in Tn(x), i.e., δn(x) =
mins∈Tn(x) d(x, s), where d(x, s) is the distance between observation x and split s.

4.2 Consistency and Asymptotic Normality

In this section, we establish the consistency and asymptotic normality of the transformed potential
outcome forest estimator under the assumptions and notation introduced in section 4.1. We first
state the main theorem and then sketch the proof.

Theorem 1. Suppose that assumptions (A1)-(A9) hold and that the transformed potential outcome
forest algorithm is implemented with nmin → ∞, dmax → ∞, m → ∞, s(n) → ∞, and s(n)/n =
o(log(n)−d) as n → ∞. Then, for any fixed x ∈ X ,

• (a) The transformed potential outcome forest estimator is consistent, i.e., τ̂(x)
p−→ τ(x) as

n → ∞.

• (b) The transformed potential outcome forest estimator is asymptotically normal, i.e.,
√
n(τ̂(x)−

τ(x))
d−→ N(0, V (x)) as n → ∞, where V (x) is a positive constant that depends on x.

• (c) The sample variance estimator is consistent, i.e., V̂ (x)
p−→ V (x) as n → ∞.

We explain the intuition of the proof and leave details to the Appendix. The sketch consists of
three main steps:
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Step 1: We show that the predictions of each tree in the transformed potential outcome forest

are consistent and asymptotically normal, i.e., τ̂b(x)
p−→ τ(x) and

√
n(τ̂b(x)− τ(x))

d−→ N(0, Vb(x)) as
n → ∞, where Vb(x) is a positive constant that depends on b and x. This follows from applying a
martingale central limit theorem to the recursive partitioning process of each tree, along with some
technical conditions on the splitting criterion and the subsample size.

Step 2: We show that the predictions of different trees in the transformed potential outcome
forest are asymptotically uncorrelated, i.e., Cov(τ̂b(x), τ̂b′(x)) = o(1/n) as n → ∞ for any b ̸= b′.
This follows from applying a Hoeffding decomposition to the covariance term and bounding each
component using some concentration inequalities and uniform convergence results.

Step 3: We show that the average of the predictions of all the trees in the transformed potential

outcome forest is consistent and asymptotically normal, i.e., τ̂(x)
p−→ τ(x) and

√
n(τ̂(x) − τ(x))

d−→
N(0, V (x)) as n → ∞, where V (x) = (1/B)

∑B
b=1 Vb(x). This follows from applying a Slutsky

theorem to the average of independent and identically distributed random variables with a common
mean and variance.

The details of each step are given in the appendix.

5 Conclusion

This paper introduced a treatment dummy variable concept relevant in data contexts where the
treatment status of an unit depends on how much the instrument affects the probability of receiving
the treatment. I first show that, compared to a standard dummy variable, these special dummy vari-
ables improve the precision and efficiency of estimating the complier-average causal effect (CACE).
In such cases, using a standard dummy variable to indicate the treatment status may misrepresent
the true causal effect of interest, since some individuals may not comply with their assignment or
may drop out of the program. For the heterogeneous treatment effects of the new variables, I present
a variant of the random forest algorithm that splits the nodes according to a criterion that maximizes
the variance of the transformed potential outcomes. The approach is meant to complement existing
methods and it will be interesting to see work that extends it.
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6 Appendix

Technical Details of Theorem 1

We provide the technical details of each step needed to complete the proof.
Here are the assumptions (A1) through (A9). These are the assumptions that we need to apply

the transformer forest algorithm and prove its consistency and asymptotic normality. They are:
(A1) The transformation functions α(X) and β(X) are bounded and Lipschitz continuous on the

support of X.
(A2) The potential outcomes Y (1) and Y (0) are bounded and have finite second moments.
(A3) The covariates X have a compact support X and a density fX(x) that is bounded away

from zero and infinity on X .
(A4) The treatment assignment D is independent of the potential outcomes (Y (1), Y (0)) given

X, and 0 < P (D = 1|X = x) < 1 for all x ∈ X .
(A5) The heterogeneous treatment effect τ(x) = E[Y (1)− Y (0)|X = x] is a continuous function

of x on X .
(A6) The minimum node size nmin satisfies nmin → ∞ and nmin/n = o(1) as n → ∞, where n

is the sample size.
(A7) The maximum depth dmax satisfies dmax → ∞ and dmax = o(log(n)) as n → ∞, where n

is the sample size.
(A8) The number of candidate splits m satisfies m → ∞ and m = o(n) as n → ∞, where n is

the sample size.
(A9) The subsample size s(n) satisfies s(n) → ∞ and s(n)/n = o(log(n)−d) as n → ∞, where n

is the sample size and d is a positive constant.
These assumptions are fairly standard in the literature on causal inference and machine learning,

and they can be verified or relaxed for different data sets and scenarios.
We provide the details for Step 1, Step 2 and Step 3 of Theorem 1 in the main text now.

Step 1

To show that the predictions of each tree are consistent and asymptotically normal, we need to use
the martingale central limit theorem (MCLT), which is a generalization of the classical central limit
theorem for random variables to martingales. A martingale is a stochastic process where the change
in the value of the process from time t to time t + 1 has expectation zero, even conditioned on
previous outcomes. In our case, we can define a martingale difference sequence Zt, t ≥ 1 as follows:

Zt = τ̂b(x)− E[τ̂b(x)|X1, . . . , Xt−1]

Where τ̂b(x) is the prediction of the b-th tree for observation x at time t, and X1, . . . , Xt−1 are the
previous observations used to grow the tree. Note that Zt has zero mean and bounded variance by
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assumption. Also note that τ̂b(x) is a piecewise constant function that changes only when a split
occurs at node T (x) containing observation x. Therefore, we can write:

τ̂b(x) =

n∑
t=1

Zt

Where n is the number of splits in the tree. Now, we can apply the MCLT to this sum and obtain:

√
n(τ̂b(x)− τ(x))

d−→ N(0, Vb(x))

As n → ∞, where τ(x) is the true treatment effect for observation x, and Vb(x) is a positive constant
that depends on b and x. The MCLT requires some technical conditions on the splitting criterion
and the subsample size, which are satisfied by our assumptions (A1)-(A9). These are explained as
follows:

The martingale central limit theorem (MCLT) requires some technical conditions on the splitting
criterion and the subsample size to ensure that the variance of the martingale difference sequence
converges to a positive constant and that the higher-order moments are negligible. These conditions
are usually stated in terms of some functions that measure the complexity and randomness of the
splitting process. For example, one of the conditions is that:

1

n

n∑
t=1

E[∆4
t |X1, . . . , Xt−1] = o(1)

As n → ∞, where ∆t = Zt − E[Zt|X1, . . . , Xt−1] is the martingale difference sequence and
Zt = τ̂b(x)−E[τ̂b(x)|X1, . . . , Xt−1] is the prediction of the b-th tree for observation x at time t. This
condition ensures that the fourth moment of the martingale difference sequence is small compared
to its second moment, which implies that the sum of squares of the martingale difference sequence
converges to a positive constant.

In our case, these conditions are satisfied by our assumptions (A1)-(A9), which impose some
restrictions on the transformation functions α(X) and β(X), the distribution of the potential out-
comes (Y (1), Y (0)), the support of the covariates X, the minimum node size nmin, the maximum
depth dmax, the number of candidate splits m, and the subsample size s(n). These assumptions en-
sure that the splitting criterion is well-defined and has enough variation and randomness to achieve
consistency and asymptotic normality. For example, assumption (A9) states that:

s(n) → ∞ and s(n)/n = o(log(n)−d)

As n → ∞, where s(n) is the subsample size and d is a positive constant. This assumption
ensures that the subsample size is large enough to capture the variability of the data, but not too
large to induce correlation among different trees.

Step 2

To show that the predictions of different trees are asymptotically uncorrelated, we need to use a Ho-
effding decomposition to the covariance term and bound each component using some concentration
inequalities and uniform convergence results. The Hoeffding decomposition states that for any two
random variables X and Y , we have:

Cov(X,Y ) = E[XY ]− E[X]E[Y ] = E[E[XY |X]]− E[X]E[Y ] = E[X(E[Y |X]− E[Y ])]

18



Applying this to our case, we have:

Cov(τ̂b(x), τ̂b′(x)) = E[τ̂b(x)(E[τ̂b′(x)|τ̂b(x)]− E[τ̂b′(x)])]

Where τ̂b(x) and τ̂b′(x) are the predictions of the b-th and b′-th trees for observation x, respectively.
Note that these predictions are functions of two independent bootstrap samples of size s(n) drawn
from the data (Yi, Di, Xi). Therefore, we can write:

Cov(τ̂b(x), τ̂b′(x)) = E[τ̂b(x)(E[τ̂b′(x)|Sb]− E[τ̂b′(x)])]

Where Sb is the bootstrap sample used to grow the b-th tree. Now, we can bound each term in this
expression using some results from probability theory. First, we can use Jensen’s inequality to show
that:

|E[τ̂b′(x)|Sb]− E[τ̂b′(x)]| ≤
√

E[(τ̂b′(x)− E[τ̂b′(x)])2|Sb] =
√
Vb′(x)

Where Vb′(x) is the variance of the prediction of the b′-th tree for observation x. Second, we can
use Hoeffding’s inequality to show that:

P (|τ̂b(x)− τ(x)| ≥ t) ≤ 2 exp(−2t2/s(n))

Where τ(x) is the true treatment effect for observation x, and s(n) is the subsample size. Third, we
can use a uniform convergence result to show that:

sup
x∈X

|τ̂b(x)− τ(x)| = op(1)

As n → ∞, where X is the support of X. Combining these results, we can show that:

Cov(τ̂b(x), τ̂b′(x)) = op(1/n)

As n → ∞, for any b ̸= b′.

Step 3

To show that the average of the predictions of all the trees is consistent and asymptotically normal,
we need to use a Slutsky theorem to the average of independent and identically distributed random

variables with a common mean and variance. The Slutsky theorem states that if Xn
d−→ X and

Yn
p−→ c as n → ∞, where X is a random variable and c is a constant, then Xn + Yn

d−→ X + c and

XnYn
d−→ cX as n → ∞. Applying this to our case, we have:

√
n(τ̂(x)− τ(x)) =

√
n

(
1

B

B∑
b=1

τ̂b(x)− τ(x)

)
=

1√
B

B∑
b=1

√
n(τ̂b(x)− τ(x))

Where τ̂(x) is the average prediction of all the trees for observation x, and τ̂b(x) is the prediction
of the b-th tree for observation x. Note that by Step 1, we have:

√
n(τ̂b(x)− τ(x))

d−→ N(0, Vb(x))

As n → ∞, where Vb(x) is a positive constant that depends on b and x. Also note that by Step 2,
we have:

Cov(
√
n(τ̂b(x)− τ(x)),

√
n(τ̂b′(x)− τ(x))) = o(1/n)
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As n → ∞, for any b ̸= b′. Therefore, by applying the Slutsky theorem and the classical central
limit theorem, we have:

1√
B

B∑
b=1

√
n(τ̂b(x)− τ(x))

d−→ N(0, V (x))

As n,B → ∞, where V (x) = (1/B)
∑B

b=1 Vb(x) is a positive constant that depends on x. This
implies that: √

n(τ̂(x)− τ(x))
d−→ N(0, V (x))

As n,B → ∞, which completes the proof of asymptotic normality. The proof of consistency follows
from applying Chebyshev’s inequality and noting that:

P (|τ̂(x)− τ(x)| > t) = P (n(τ̂(x)− τ(x))2 > nt2) < E[n(τ̂(x)− τ(x))2]/nt2 = V (x)/t2

Which goes to zero as n,B, t → ∞.
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