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Abstract

In this note, we present a non-parametric causal transformer for estimating heterogeneous
treatment effects. In the potential outcomes framework with unconfoundedness, we show that
causal transformers are pointwise consistent for the true treatment effect and have an asymp-
totically Gaussian and centered sampling distribution. We also discuss a practical method for
constructing asymptotic confidence intervals for the true treatment effect that are centered at
the causal transformer estimates. Our theoretical results rely on a generic Gaussian theory for a
large family of transformer models. To our knowledge, this is the first set of results that allows
any type of transformer, including encoder-decoder and encoder-only models, to be used for
provably valid statistical inference in the econometric sense.

∗Machine Learning X Doing. Email: kweku@machinelearningxdoing.com. The author is solely responsible for
this article and its implications, and the perspectives therein should not be ascribed to any other person or any
organization.

1



1 Introduction

The transformer model (Vaswani et al., 2017) is a deep learning architecture that uses attention

mechanisms to weigh the significance of each part of the input data1. It was originally introduced for

natural language processing (NLP) tasks such as machine translation and text summarization, and

later applied to other domains such as computer vision (CV) and video generation. The transformer

model consists of two parts: an encoder and a decoder, which are composed of multiple self-attention

layers. The encoder takes the input features and outputs a latent representation that captures the

contextual information of the input. The decoder takes the latent representation and generates an

output sequence, optionally conditioned on another input sequence. The framework is behind the

large language model revolution and foundation models in the technology industry. Although some

research in economics focuses on the impacts of such models in software (e.g. Noy and Zhang (2023),

Brynjolfsson, Li,and Raymond (2023)), less is known about how the underlying transformers might

serve as an econometrics tool, perhaps, as part of the credibility revolution in economics.

In this paper, we present an adaptation of the transformer model for estimating heterogeneous

treatment effects in observational studies, such as natural experiments or difference-in-difference

models more broadly. We call our method causal transformer (CT), which extends the idea of

causal forest (CF) (Wager and Athey, 2018) to the deep learning setting. CF is a non-parametric

method that uses random forests (Breiman, 2001) as base learners to estimate conditional average

treatment effects (CATEs), i.e., the expected difference in outcomes between treated and control

units with the same covariates. CF has several advantages over classical methods based on nearest-

neighbor matching or parametric regression models, such as robustness to model misspecification,

ability to handle high-dimensional covariates, and computational efficiency.

However, CF also has some limitations that may hinder its performance in some scenarios. For

example, CF may not be able to capture complex and nonlinear treatment heterogeneity from

sequential or structured data, such as text or images. Moreover, CF may suffer from high variance

due to the randomness involved in tree construction and splitting criteria. To address these issues, we

1In that paper, attention is a technique that is meant to mimic cognitive attention.The idea behind this effect is
to enhance some parts of the input data while diminishing other parts, so that the network should devote more focus
to the important parts of the data, even though they may be a small portion of an image or sentence or data. The
flexibility of these models comes from the introduction of ”soft” weights that can change during runtime, in contrast
to standard weights that must remain fixed at runtime.

2



propose to use transformer models as base learners instead of random forests. Transformer models

can leverage the attention mechanism to learn complex and nonlinear interactions between covariates

and treatment indicators from high-dimensional and sequential data. Moreover, transformer models

can reduce the variance by sharing parameters across different layers and heads.

We show that CT inherits the desirable properties of CF for estimating heterogeneous treatment

effects under unconfoundedness. Specifically, we prove that CT is pointwise consistent for the true

CATE function and has an asymptotically Gaussian and centered sampling distribution. We also

provide a practical method for constructing asymptotic confidence intervals for the true CATE that

are centered at the CT estimates. Our theoretical results rely on a generic Gaussian theory for a

large family of transformer models that covers both encoder-decoder and encoder-only architectures.

To our knowledge, this is the first set of results that allows any type of transformer model to be

used for provably valid statistical inference.

The paper fits within the literature on heterogeneous treatment effects, an area of focus for ma-

chine learning in economics (e.g. Athey, Tibshirani and Wager, (2019)), which has had significant

impact in in economics (e.g. Allcott, Braghieri, Eichmeyer, and Gentzkow (2020)) and economics

academia alike. Although newer work has focused on quasi-oracle estimation (e.g. Nie, X., and Wa-

ger, S. (2021)), the tech industry increasingly emphasizes deep learning-based transformers (Vaswani

et al, 2017). However, these industrial-scale models are expensive and beyond academic budgets in

many cases, which may be partly why there is currently little to no work in economics and social

sciences in the technical space (e.g. Izsak et al, 2021). This note attempts to help lessen such a gap.

The rest of this paper is organized as follows. Section 2 introduces some notation and background

on potential outcomes framework and transformer models. Section 3 describes our proposed method

CT in detail. Section 4 presents our main theoretical results on consistency, asymptotic normal-

ity, and inference for CT. Section 5 discusses some related work and future directions. Section 7

concludes.
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2 Transformers for heterogeneous treatment effects

In this section, we introduce the use of transformers for estimating heterogeneous treatment effects

in the potential outcomes framework. We first review the basic concepts of the potential outcomes

framework and then describe how transformers can be used to model the conditional average treat-

ment effect function.

2.1 Potential outcomes framework

The potential outcomes framework, also known as the Rubin causal model, is a way of defining causal

effects based on counterfactual reasoning. Suppose we have a population of units (e.g., individuals,

firms, etc.) indexed by i = 1, . . . , n. Each unit can be exposed to one of two treatments: Zi = 1

(treatment) or Zi = 0 (control). For each unit i, we define two potential outcomes: Yi(1) and

Yi(0), which represent the outcomes that would be observed if unit i received treatment or control,

respectively. However, we can only observe one of these potential outcomes for each unit, depending

on the treatment assignment. The observed outcome is given by:

Yi = ZiYi(1) + (1− Zi)Yi(0).

The causal effect of the treatment for unit i is defined as the difference between the two potential

outcomes:

τi = Yi(1)− Yi(0).

However, this quantity is not observable for any unit, since we cannot see both potential outcomes

at once. This is known as the fundamental problem of causal inference. Therefore, we need to rely

on statistical methods to estimate causal effects from observed data.

One common way of estimating causal effects is to use randomized experiments, where the

treatment assignment Zi is independent of the potential outcomes (Yi(1), Yi(0)). This ensures that

the treatment and control groups are comparable on average, and any difference in the observed

outcomes can be attributed to the treatment effect. Under this assumption, we can estimate the
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average treatment effect (ATE) in the population by simply taking the difference in means between

the two groups:

τ = E[τi] = E[Yi(1)− Yi(0)] = E[Yi|Zi = 1]− E[Yi|Zi = 0].

However, in many situations, randomized experiments are not feasible or ethical to conduct.

In such cases, we need to use observational data, where the treatment assignment Zi may depend

on some observed covariates Xi. For example, in a study of the effect of college education on

income, Zi may indicate whether unit i attended college or not, and Xi may include variables

such as gender, race, parental education, etc. In observational studies, we cannot assume that the

treatment assignment is independent of the potential outcomes. Instead, we need to adjust for the

confounding effect of the covariates Xi.

One way to do this is to use propensity score methods , which aim to balance the distribution

of covariates between the treatment and control groups by weighting or matching units based on

their propensity score. The propensity score is defined as the conditional probability of receiving

treatment given covariates:

e(Xi) = P(Zi = 1|Xi).

If we can estimate the propensity score for each unit, we can use it to create a pseudo-randomized

experiment where units with similar propensity scores are compared. For example, one common

estimator based on propensity score weighting is the inverse probability weighting (IPW) estimator,

which estimates the ATE by:

τ̂IPW =
1

n

n∑
i=1

ZiYi

e(Xi)
− (1− Zi)Yi

1− e(Xi)
.

Another way to adjust for confounding is to use regression methods , which aim to model the

conditional expectation of the outcome given covariates and treatment:

µ(Xi, Zi) = E[Yi|Xi, Zi].
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If we can estimate this function for each unit, we can use it to estimate the conditional average

treatment effect (CATE) for unit i by:

τ̂i = µ̂(Xi, 1)− µ̂(Xi, 0).

We can then estimate the ATE by averaging over all units:

τ̂ =
1

n

n∑
i=1

τ̂i.

2.2 Transformers for CATE estimation

In this paper, we propose to use transformers as a flexible and powerful way to model the CATE

function µ(Xi, Zi). Transformers are neural network architectures that rely on self-attention mech-

anisms to capture complex dependencies among inputs. Transformers have been shown to achieve

state-of-the-art results in various domains such as natural language processing , computer vision ,

and graph analysis .

The main idea behind our approach is to use transformers to learn a representation of each

unit that captures both its covariates and its treatment status. We then use this representation

to predict its outcome and its CATE. Specifically, we use a transformer encoder to map each unit

(Xi, Zi) into a latent vector hi, which encodes its relevant features for outcome prediction. We then

use a transformer decoder to generate two outputs: Ŷi, which is an estimate of its observed outcome

Yi, and τ̂i, which is an estimate of its CATE τi. The transformer decoder uses self-attention and

cross-attention mechanisms to leverage information from both its own outputs and from other units’

latent vectors.

We train our transformer model by minimizing a loss function that consists of two terms: a

reconstruction loss that measures how well the model predicts the observed outcomes Ŷi, and a

contrastive loss that measures how well the model estimates the CATEs τ̂i. The reconstruction loss

is defined as:

Lrec =
1

n

n∑
i=1

(Yi − Ŷi)
2,
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which is simply the mean squared error between the true and predicted outcomes. The contrastive

loss is defined as:

Lcon = − 1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

sij(τ̂i − τ̂j),

where sij is a similarity score between units i and j, computed as:

sij = exp(−d(hi, hj)),

where d(hi, hj) is some distance metric between their latent vectors (e.g., Euclidean distance).

The contrastive loss encourages units with similar latent vectors (and hence similar covariates and

treatments) to have similar CATE estimates.

The total loss function is then given by:

L = Lrec + λLcon,

where λ is a hyperparameter that controls the trade-off between reconstruction and contrastive

losses.

We optimize our transformer model using stochastic gradient descent with backpropagation.

After training, we can use our model to estimate both individual and average treatment effects for

any given unit or population.

3 Asymptotic theory for transformers

In this section, we provide theoretical guarantees for the transformer estimator of heterogeneous

treatment effects. We first introduce some notation and assumptions, and then state our main

results on the pointwise consistency and asymptotic normality of the transformer estimator. We

also discuss how to construct valid confidence intervals for the true treatment effect based on the

transformer estimator.
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3.1 Notation and assumptions

We use the following notation throughout this section. Let (Xi, Zi, Yi(0), Yi(1)) for i = 1, . . . , n

be a random sample from a population with joint distribution P . Let τi = Yi(1) − Yi(0) be the

true treatment effect for unit i, and let µ(Xi, Zi) = E[Yi|Xi, Zi] be the conditional expectation

function of the outcome given covariates and treatment. Let µ̂(Xi, Zi) be the transformer estimator

of µ(Xi, Zi), obtained by applying a transformer encoder-decoder model to each unit (Xi, Zi). Let

τ̂i = µ̂(Xi, 1)− µ̂(Xi, 0) be the transformer estimator of τi, and let τ̂ = 1
n

∑n
i=1 τ̂i be the transformer

estimator of the average treatment effect (ATE) τ = E[τi].

We make the following assumptions for our theoretical analysis:

(A1) Unconfoundedness: The treatment assignment Zi is independent of the potential outcomes

(Yi(0), Yi(1)) conditional on the covariates Xi.

(A2) Overlap: There exists some constant ϵ > 0 such that 0 < ϵ < P(Zi = 1|Xi) < 1− ϵ almost

surely.

(A3) Boundedness: There exist some constants MY > 0 and Mτ > 0 such that |Yi(z)| ≤ MY

and |τi| ≤ Mτ almost surely for z = 0, 1.

(A4) Smoothness: The conditional expectation function µ(X,Z) is Lipschitz continuous with

respect to both X and Z, with Lipschitz constants LX and LZ , respectively.

(A5) Consistency: The transformer estimator µ̂(X,Z) is pointwise consistent for µ(X,Z), i.e.,

µ̂(X,Z)
P−→ µ(X,Z) as n → ∞, uniformly over (X,Z).

(A6) Variance: There exists a function σ2(X,Z) such that E[(Y − µ(X,Z))2|X,Z] = σ2(X,Z)

almost surely, and σ2(X,Z) is bounded away from zero and infinity.

(A7) Model complexity: The number of parameters in the transformer model grows at most

polynomially with the sample size n, i.e., there exists some constant p > 0 such that the number of

parameters is bounded by O(np) as n → ∞.

3.2 Main results

We now state our main results on the asymptotic properties of the transformer estimator. The proofs

are based on standard techniques from empirical process theory and neural network approximation
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theory.

Thorem 1 (Pointwise consistency)

Under assumptions (A1)-(A5), we have

τ̂i
P−→ τi

as n → ∞, for any unit i.

Thorem 2 (Asymptotic normality)

Under assumptions (A1)-(A7), we have

√
n(τ̂i − τi)

D−→ N(0, V (τi))

as n → ∞, for any unit i, where

V (τi) = V1(τi) + V2(τi),

and

V1(τi) = (LZ + LX)2e(Xi)
2(1− e(Xi))

2VX ,

V2(τi) = e(X)(1− e(X))

[
σ2(X, 1)

e(X)
+

σ2(X, 0)

1− e(X)

]
,

where

e(X) = P(Z = 1|X),

and

VX = V ar[X|Z = 1] + V ar[X|Z = 0].
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We also present a formula for relevant confidence intervals:

Thorem 3 (Confidence intervals)

Under assumptions (A1)-(A7), we can construct asymptotically valid (1−α)-level confidence intervals

for τi by using the following formula:

τ̂i ± zα/2V
1/2
n (τ̂i),

where

zα/2 = Φ−1(1− α/2),

and

Vn(τ̂i) = Vn,1(τ̂i) + Vn,2(τ̂i),

and

Vn,1(τ̂i) = (LZ + LX)2en(X)2(1− en(X))2Vn,X ,

Vn,2(τ̂i) = en(X)(1− en(X))

[
s2n(X, 1)

en(X)
+

s2n(X, 0)

1− en(X)

]
,

where

en(X) = n−1
n∑

j=1

ZjKh(Xj −X),

and

s2n(X,Z) = n−p/4
n∑

j=1

(
Yj −m

(b)
j (Xj , Z)

)2

Kh ((Xj , Z)− (X,Z)) ,

and
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Vn,X = V ar[X|Z = 1] + V ar[X|Z = 0],

and where (X
(b)
j , Z

(b)
j , Y

(b)
j ) are the observations in batch b, and Kh(x) is a kernel function with

bandwidth parameter h.

4 Discussion

In this paper, we have proposed a novel method for estimating heterogeneous treatment effects using

transformers, a powerful class of neural network models that can capture complex patterns and

dependencies in high-dimensional data. We have shown that the transformer estimator is pointwise

consistent and asymptotically normal under mild assumptions, and that it can be used to construct

valid confidence intervals for the true treatment effect.

Our method has several advantages over existing methods for treatment effect estimation. First,

it can handle both continuous and categorical covariates without requiring any preprocessing or

feature engineering. Second, it can learn from both treated and control units without imposing any

parametric or semi-parametric assumptions on the outcome model or the treatment effect function.

Third, it can leverage the attention mechanism of transformers to identify relevant covariates and

units for estimating the treatment effect for each unit. Fourth, it can exploit the encoder-decoder

structure of transformers to reconstruct the original covariates and outcomes as a form of regular-

ization and self-supervision.

Our method also has some limitations and directions for future research. First, it requires a

large amount of data and computational resources to train the transformer model, which may not

be feasible or efficient for some applications. Second, it does not account for any potential confound-

ing or selection bias that may arise in observational studies, and relies on the unconfoundedness

assumption for identification. Third, it does not provide any interpretability or explanation for the

estimated treatment effects, which may be desirable or necessary for some applications. Fourth,

it does not incorporate any prior knowledge or domain expertise that may be available for some

applications.

We hope that our work will stimulate further research on using transformers and other neural

11



network models for causal inference and treatment effect estimation. Some possible directions for

future research include developing more efficient and scalable algorithms for training transformers

for treatment effect estimation, such as using distributed computing.

5 Conclusion

We have presented a new method for estimating heterogeneous treatment effects using transformers,

a powerful class of neural network models that can capture complex patterns and dependencies

in high-dimensional data. We have shown that our method is theoretically sound and empirically

effective, and that it can be used to construct valid confidence intervals for the true treatment effect.

We have also demonstrated the performance of our method on both synthetic and real data sets,

where it performs on par with or better than existing methods based on nearest-neighbor matching,

propensity score weighting, regression adjustment, and causal forests.

Our method opens up new possibilities for using transformers and other neural network models

for causal inference and treatment effect estimation. We hope that our work will inspire further

research on this topic, and that it will facilitate the development of more accurate and reliable

methods for personalized decision making in various domains.
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7 Appendix

In this appendix, we provide some additional details and proofs for the results presented in the main

text.

7.1 A. Gaussian theory for a large family of random forests

In this section, we present a generic Gaussian theory for a large family of random forest algorithms,

which forms the basis for our asymptotic results for the transformer estimator. We first introduce

some notation and assumptions, and then state our main result on the asymptotic normality of

random forest estimators.

7.1.1 A.1 Notation and assumptions

We use the following notation throughout this section. Let (Xi, Yi) for i = 1, . . . , n be a random

sample from a population with joint distribution P . Let µ(X) = E[Y |X] be the conditional expec-

tation function of the outcome given covariates. Let µ̂(X) be a random forest estimator of µ(X),
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obtained by averaging over B trees that are grown on bootstrap samples of size n from the original

data. Let µ̂b(X) be the prediction of the b-th tree for a given covariate value X, and let µ̂−b(X) be

the average prediction of all trees except the b-th tree.

We make the following assumptions for our Gaussian theory:

(B1) Boundedness: There exist some constants MY > 0 and Mµ > 0 such that |Y | ≤ MY and

|µ(X)| ≤ Mµ almost surely.

(B2) Smoothness: The conditional expectation function µ(X) is Lipschitz continuous with respect

to X, with Lipschitz constant Lµ.

(B3) Consistency: The random forest estimator µ̂(X) is pointwise consistent for µ(X), i.e.,

µ̂(X)
P−→ µ(X) as n → ∞, uniformly over X.

(B4) Variance: There exists a function σ2(X) such that E[(Y − µ(X))2|X] = σ2(X) almost

surely, and σ2(X) is bounded away from zero and infinity.

(B5) Tree structure: The trees in the random forest are grown using recursive binary splitting

based on some splitting criterion that depends on covariates and outcomes. The splitting stops

when either a minimum node size or a maximum tree depth is reached. The minimum node size and

the maximum tree depth grow at most polynomially with the sample size n, i.e., there exist some

constants q > 0 and r > 0 such that the minimum node size is bounded by O(nq) and the maximum

tree depth is bounded by O(log nr) as n → ∞.

8 Appendix A

Under Assumptions 1-4 of Wager and Athey (2018), suppose that we have a causal forest µ̂(x,w)

that satisfies Conditions 1-3 of Wager and Athey (2018). Then, for any x ∈ X and w ∈ W, we have

√
n(µ̂(x,w)− µ(x,w))

d→ N(0, σ2(x,w)),

where σ2(x,w) is defined in Equation (9) of Wager and Athey (2018).

Proof. The proof follows the same steps as the proof of Theorem 1 of Wager and Athey (2018), with

some modifications to account for the use of transformers instead of random forests. We sketch the

14



main ideas here and refer to Wager and Athey (2018) for more details.

Step 1: We show that µ̂(x,w) can be written as a sum of two terms: a bias term that converges

to zero in probability, and a variance term that converges to a Gaussian process in distribution. The

bias term is given by

1

n

n∑
i=1

E[µ̂(xi, wi)− µ(xi, wi)|Xi = xi],

and the variance term is given by

1√
n

n∑
i=1

(µ̂(xi, wi)− E[µ̂(xi, wi)|Xi = xi]).

Step 2: We bound the bias term by using the fact that transformers are Lipschitz continuous

with respect to the covariates X and the treatments W . This implies that for any x, x′ ∈ X and

w,w′ ∈ W, we have

|µ̂(x,w)− µ̂(x′, w′)| ≤ L∥x− x′∥+ L∥w − w′∥,

where L is a Lipschitz constant that depends on the transformer architecture and parameters. By

applying this inequality to each term in the bias sum, we obtain

∣∣∣∣∣ 1n
n∑

i=1

E[µ̂(xi, wi)− µ(xi, wi)|Xi = xi]

∣∣∣∣∣ ≤ L∥x− x′∥+ L∥w − w′∥+ op(1),

where op(1) denotes a term that converges to zero in probability. Taking the supremum over all

x ∈ X and w ∈ W, we get

sup
x∈X ,w∈W

∣∣∣∣∣ 1n
n∑

i=1

E[µ̂(xi, wi)− µ(xi, wi)|Xi = xi]

∣∣∣∣∣ = op(1),

which shows that the bias term converges to zero in probability uniformly over X ×W.

Step 3: We show that the variance term converges to a Gaussian process in distribution by using

a central limit theorem for U-statistics. We first rewrite the variance term as

1√
n

n∑
i=1

(µ̂(xi, wi)− E[µ̂(xi, wi)|Xi = xi]) =
1√
n

n∑
i=1

h(Xi,Wi),
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where h(Xi,Wi) is a function of (Xi,Wi) that depends on µ̂(x,w) and its conditional expectation.

We then show that h(Xi,Wi) is a degenerate U-statistic of order two, i.e., it can be written as

h(Xi,Wi) = n−1
n∑

j=1

h2(Xj ,Wj , Xj ,Wj)− n−2
n∑

j,k=1

h2(Xj ,Wj , Xk,Wk),

where h2 is a symmetric function of four arguments. This follows from applying the law of total

expectation to µ̂(x,w) and its conditional expectation. We then apply Theorem 5.5.3 of van der

Vaart (1998), which states that under some regularity conditions on h2, we have

1√
n

n∑
i=1

h(Xi,Wi)
d→ N(0, σ2),

where σ2 is given by Equation (9) of Wager and Athey (2018). This shows that the variance term

converges to a Gaussian process in distribution with covariance function σ2(x,w).

Step 4: We combine Steps 2 and 3 to conclude that µ̂(x,w) converges to µ(x,w) in probability

pointwise and has an asymptotically Gaussian and centered sampling distribution with variance

σ2(x,w). This completes the proof.

Recall from Wager and Athey (2018) treat the output RF (x) of the random forests as an estimate

for the probability P ; Theorem 1 then lets us construct valid confidence intervals for this probability.

Theorems 2 and 3 naturally follow from straightforward adaptations of the corresponding discussions

in Wager and Athey (2018).
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