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Abstract

In livestreams and other real-time data applications of linear contextual bandits, the treat-
ment assignment may depend on some observable characteristic of the context, such as a thresh-
old or a cutoff. This creates unique challenges for estimating the causal effects of the actions,
as well as for balancing exploration and exploitation. We propose a novel approach that lever-
ages the regression discontinuity design (RDD) framework for linear contextual bandits. We
develop two algorithms, RDD’s BLTS and RDD’s BLUCB, that use RDD-based estimation and
exploration methods in the IPTW context of Dimakopoulou, Zhou, Athey and Imbens (2017).
Specifically, RDD’s BLTS uses Bayesian linear regression with balancing weights to estimate
the potential outcomes and select the actions with the highest posterior mean. RDD’s BLUCB
uses local linear regression with upper confidence bounds to estimate the potential outcomes
and select the actions with the highest upper bound. We provide theoretical guarantees on the
regret bounds of our algorithms, which depend on the distance from the cutoff and the band-
width of the RDD. We assume that the potential outcomes and the covariates are continuous
and smooth in the forcing variable that determines the treatment assignment, and that the
optimal bandwidth for each context is chosen to minimize some criterion such as mean squared
error or coverage error probability.
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1 Introduction

On any given modern platform, there are very large numbers of new profiles, posts, clicks and search

queries created and consumed faster than the human eye can see, which translates into a never-

ending avalanche of data for firms and organizations to make decisions with. In the area of video,

this constant flow of data is the idea behind livestreams, or watching videos in real-time. Such

settings reflect real-time datastreams, where the data in question is a sequence of data elements

continually made available over time. Datastreams arrive sequentially, and often at high speed, so

that statistical analyses must occur in real-time, with the constraints of partial data and the inability

to store the entire dataset.

Contextual bandits are a class of online learning problems where an agent interacts with an

environment that provides context information, actions, and rewards. The agent’s goal is to learn

a policy that maximizes the expected cumulative reward over time. Contextual bandits have many

applications in domains such as recommender systems, online advertising, personalized medicine,

and many more [1, 2, 3].

A key challenge in contextual bandits is to estimate the causal effects of the actions, i.e., the

potential outcomes that would have been observed if the agent had chosen a different action. This

is essential for learning an optimal policy, as well as for evaluating the performance of the agent.

However, in many applications, the treatment assignment depends on some observable characteristic

of the context, such as a threshold or a cutoff. For example, in online advertising, the ads shown to

a user may depend on their click-through rate. In personalized medicine, the treatment given to a

patient may depend on their blood pressure or their medical history. In social welfare, the eligibility

for a program may depend on their income or their education level. This creates a selection bias that

confounds the estimation of the causal effects, and also affects the exploration-exploitation trade-off.

To address this challenge, we propose a novel approach that leverages the regression discontinuity

design (RDD) framework [4, 5] to estimate the causal effects and learn an optimal policy in contex-

tual bandits. RDD is a quasi-experimental method that exploits a discontinuity in the treatment

assignment rule to identify the local average treatment effect (LATE) around the cutoff. The key

idea is to compare the outcomes of units that are close to but on either side of the cutoff, under
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the assumption that they are similar in all other aspects except for the treatment. RDD has been

widely used in economics, political science, and education to evaluate the impact of various policies

and interventions [6, 7, 8].

We develop two algorithms, RDD’s BLTS and RDD’s BLUCB, that use RDD-based estimation

and exploration methods to select actions and estimate causal effects in contextual bandits. Specifi-

cally, RDD’s BLTS uses Bayesian linear regression with balancing weights to estimate the potential

outcomes and select the actions with the highest posterior mean. RDD’s BLUCB uses local linear

regression with upper confidence bounds to estimate the potential outcomes and select the actions

with the highest upper bound. We also provide theoretical guarantees on the regret bounds of

our algorithms, which depend on the distance from the cutoff and the bandwidth of the RDD. We

demonstrate the effectiveness of our approach on synthetic and real data sets, and show that it

outperforms existing contextual bandit algorithms in scenarios with discontinuous treatment effects.

The main contributions of this paper are:

• We propose a novel approach that integrates RDD into contextual bandit problems within the

context of the Rubin causal model [9] and linear contextual bandits [10].

• We develop two algorithms, RDD’s BLTS and RDD’s BLUCB, that use Bayesian linear re-

gression and local linear regression methods, respectively, to estimate the potential outcomes

and select actions in contextual bandits. These generalize the BLTS and BLUCB algorithms

in [10] for contexts where RDDs are relevant.

• We provide theoretical guarantees on the regret bounds of our algorithms, which depend on

the distance from the cutoff and the bandwidth of the RDD.

The rest of this paper is organized as follows: Section 2 introduces some background and related

work on contextual bandits and RDD. Section 3 describes our problem formulation and assump-

tions. Section 4 presents our proposed algorithms and their regret analysis. Section 5 reports our

experimental results. Section 6 concludes with some discussion and future directions.
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2 Background and Related Work

In this section, we provide some background and related work on contextual bandits and regression

discontinuity designs.

2.1 Contextual Bandits

Contextual bandits are a class of online learning problems where an agent interacts with an environ-

ment that provides context information, actions, and rewards. The agent’s goal is to learn a policy

that maximizes the expected cumulative reward over time. Formally, the problem can be described

as follows:

At each round t = 1, . . . , T , the agent observes a context vector xt ∈ Rd that encodes some

relevant information about the environment.

The agent chooses an action at ∈ [K], where [K] = {1, . . . ,K} is the set of possible actions. The

action may depend on the context vector xt.

The agent receives a reward rt ∈ [0, 1], which is a realization of a random variable Yt,at
. The

reward may depend on both the context vector xt and the action at.

The agent updates its policy based on the observed context vector, action, and reward.

The performance of the agent is measured by the regret, which is the difference between the

expected cumulative reward of the optimal policy and the expected cumulative reward of the agent’s

policy. The optimal policy is defined as the policy that always chooses the action that maximizes

the expected reward given the context vector, i.e.,

a∗t = arg max
a∈[K]

E[Yt,a|xt].

The regret after T rounds is defined as

RT =

T∑
t=1

E[Yt,a∗
t
]− E[Yt,at

].

The goal of the agent is to minimize the regret over time.

There are various methods and algorithms for solving contextual bandit problems. Some of the
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most popular ones are:

Epsilon-greedy: This is a simple and intuitive method that balances exploration and exploitation

by choosing a random action with probability ϵ, and choosing the best action according to the current

estimates with probability 1 − ϵ. The estimates are updated using simple averages of the observed

rewards [15].

Upper Confidence Bound (UCB): This is a more sophisticated method that balances exploration

and exploitation by choosing the action that maximizes an upper confidence bound on the expected

reward. The upper confidence bound is computed using a concentration inequality such as Hoeffd-

ing’s inequality or Bernstein’s inequality. The estimates are updated using simple averages of the

observed rewards [16].

Thompson Sampling: This is a Bayesian method that balances exploration and exploitation by

choosing an action according to its posterior probability of being optimal. The posterior probability

is computed using Bayes’ rule and a prior distribution on the expected rewards. The estimates are

updated using Bayesian inference [17].

These methods can be extended to handle different types of contexts and actions, such as linear

contexts [18], nonlinear contexts [19], continuous actions [20], or combinatorial actions [21]. However,

these methods assume that the treatment assignment is random or independent of the context vector.

This assumption may not hold in many applications, where the treatment assignment depends on

some observable characteristic of the context vector, such as a threshold or a cutoff. This creates

a challenge for estimating the causal effects of the actions, as well as for balancing exploration and

exploitation.

2.2 Regression Discontinuity Designs

Regression discontinuity design (RDD) is a quasi-experimental method that exploits a discontinuity

in the treatment assignment rule to identify the local average treatment effect (LATE) around the

cutoff. The idea is to compare the outcomes of units that are close to but on either side of the cutoff,

under the assumption that they are similar in all other aspects except for the treatment. Formally,

the method can be described as follows:

Let X1 be a scalar variable called the forcing variable that determines whether a unit receives
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treatment or not. Let Z be a binary variable called the treatment indicator that indicates whether

a unit receives treatment or not. Let Y be a scalar variable called the outcome that measures the

effect of the treatment on the unit. Let X2, . . . , Xd be other covariates that may affect the outcome.

The treatment assignment rule is given by

Z = I(X1 > c),

where c ∈ R is the cutoff parameter, and I(·) is the indicator function. This means that units with

X1 > c receive treatment, and units with X1 ≤ c do not receive treatment.

The potential outcomes are given by

Yi,0 = f0(xi) + ϵi,0,

and

Yi,1 = f1(xi) + ϵi,1,

where f0 and f1 are unknown functions that represent the conditional expectation of the outcome

given the covariates under no treatment and treatment, respectively, and ϵi,0 and ϵi,1 are zero-

mean noises that represent the unobserved heterogeneity of the outcome under no treatment and

treatment, respectively.

The observed outcome is given by

Yi = ZiYi,1 + (1− Zi)Yi,0,

where Zi is the treatment indicator for unit i. This means that we only observe one potential

outcome for each unit, depending on whether they receive treatment or not.

The local average treatment effect (LATE) is given by

τ = lim
x1→c+

f1(x1)− lim
x1→c−

f0(x1),

where c+ and c− denote the right and left limits of the cutoff c, respectively. This means that the
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LATE is the difference between the expected outcomes under treatment and no treatment at the

cutoff.

RDD has been widely used in economics, political science, and education to evaluate the impact

of various policies and interventions [6, 7, 8]. In these domains, the forcing variable may represent

some eligibility criterion or score that determines whether a unit receives treatment or not, such as

income, test score, or age. The treatment indicator may represent some policy or intervention that

can be applied to a unit or not, such as tax credit, scholarship, or voting right. The outcome may

represent some effect or impact of the treatment on the unit, such as consumption, graduation, or

turnout.

There are various methods and techniques for implementing RDD. Some of the most popular

ones are:

Sharp RDD: This is a method that assumes that the treatment assignment is deterministic and

depends only on the forcing variable. The LATE is estimated by fitting a regression model to the

observed outcomes on both sides of the cutoff, and taking the difference between the predicted

outcomes at the cutoff [4].

Fuzzy RDD: This is a method that relaxes the assumption of sharp RDD and allows for some

randomness or incompliance in the treatment assignment. The LATE is estimated by using an in-

strumental variable approach that exploits the discontinuity in the probability of receiving treatment

at the cutoff [5].

Local Linear RDD: This is a technique that improves the estimation of sharp or fuzzy RDD by

using a local linear regression model instead of a global polynomial regression model. The local

linear regression model fits a linear function to the observed outcomes within a bandwidth of the

cutoff, and uses a kernel function to assign weights to the observations according to their distance

from the cutoff [22].

Balancing RDD: This is a technique that improves the estimation of sharp or fuzzy RDD by

using balancing weights instead of kernel weights. The balancing weights adjust for the imbalance

in the covariate distributions across different treatments, and ensure that the treated and control

units are comparable within a bandwidth of the cutoff [23].

These methods can be extended to handle different types of forcing variables and outcomes, such
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as discrete forcing variables [24], multiple forcing variables [25], multiple treatments [26], or multiple

outcomes [27]. However, these methods are mainly designed for offline analysis and evaluation of

causal effects. They do not address how to use RDD for online learning and optimization of policies

or interventions in contextual bandit settings.

3 Problem Formulation and Assumptions

In this section, we formulate the problem of RDD-based contextual bandits and state the assumptions

that we make throughout the paper.

3.1 Problem Formulation

We consider a contextual bandit problem where the treatment assignment depends on a cutoff on

the first coordinate of the context vector. Formally, the problem can be described as follows:

At each round t = 1, . . . , T , the agent observes a context vector xt ∈ Rd that encodes some

relevant information about the environment.

The agent chooses an action at ∈ [K], where [K] = {1, . . . ,K} is the set of possible actions. The

action may depend on the context vector xt.

The agent receives a reward rt ∈ [0, 1], which is a realization of a random variable Yt,at . The

reward may depend on both the context vector xt and the action at.

The agent updates its policy based on the observed context vector, action, and reward.

The performance of the agent is measured by the regret, which is the difference between the

expected cumulative reward of the optimal policy and the expected cumulative reward of the agent’s

policy. The optimal policy is defined as the policy that always chooses the action that maximizes

the expected reward given the context vector, i.e.,

a∗t = arg max
a∈[K]

E[Yt,a|xt].
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The regret after T rounds is defined as

RT =

T∑
t=1

E[Yt,a∗
t
]− E[Yt,at

].

The goal of the agent is to minimize the regret over time.

The treatment assignment rule is given by

Zi = I(xi,1 > c),

where c ∈ R is the cutoff parameter, and I(·) is the indicator function. This means that units with

xi,1 > c receive treatment, and units with xi,1 ≤ c do not receive treatment.

The potential outcomes are given by

Yi,a = ⟨xi, θa⟩+ ϵi,a,

where θa ∈ Rd is an unknown parameter vector for action a, and ϵi,a is a zero-mean sub-Gaussian

noise with variance σ2.

The observed outcome is given by

Yi = ZiYi,1 + (1− Zi)Yi,0,

where Zi is the treatment indicator for unit i. This means that we only observe one potential

outcome for each unit, depending on whether they receive treatment or not.

The local average treatment effect (LATE) is given by

τ = lim
x1→c+

f1(x1)− lim
x1→c−

f0(x1),

where c+ and c− denote the right and left limits of the cutoff c, respectively. This means that the

LATE is the difference between the expected outcomes under treatment and no treatment at the

cutoff.
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3.2 Assumptions

We make the following assumptions throughout the paper:

Assumption 1. The context vectors are drawn independently from a distribution with a

bounded density function on a compact set.

Assumption 2. The parameter vectors θa are distinct and bounded for all actions a ∈ [K].

Assumption 3. The noises ϵi,a are independent and sub-Gaussian with variance σ2 for all units

i and actions a ∈ [K].

Assumption 4. The functions f0 and f1 are continuous and differentiable at the cutoff c.

These assumptions are standard and reasonable in many applications of contextual bandits and

RDD. Assumption 1 ensures that the context vectors are diverse and informative enough to learn

a good policy. Assumption 2 ensures that there is a unique optimal action for each context vector.

Assumption 3 ensures that the rewards are stochastic and bounded. Assumption 4 ensures that

there is a well-defined LATE at the cutoff.

4 Proposed Algorithms and Regret Analysis

In this section, we describe our proposed algorithms, RDD’s BLTS and RDD’s BLUCB, and provide

theoretical guarantees on their regret bounds. We assume that the potential outcomes are linear

functions of the context and action features, i.e.,

Yi,a = ⟨xi, θa⟩+ ϵi,a,

where θa ∈ Rd is the unknown parameter vector for action a, and ϵi,a is a zero-mean sub-Gaussian

noise with variance σ2. We also assume that the treatment assignment is determined by a cutoff on

the first coordinate of the context vector, i.e.,

Zi = I(xi,1 > c),

where c ∈ R is the cutoff parameter, and I(·) is the indicator function.
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4.1 RDD’s BLTS

The RDD’s BLTS algorithm is based on the Bayesian linear regression method with balancing

weights. The idea is to use a Bayesian model to capture the uncertainty about the parameter

vectors θa, and to use balancing weights to adjust for the imbalance in the covariate distributions

across different treatments. The algorithm works as follows:

(1) At each round t = 1, . . . , T , the agent observes a context vector xt ∈ Rd.

(2) For each action a ∈ Rd, the agent computes a posterior distribution for θa based on the

previous observations within a bandwidth ht of the cutoff c. The agent uses a conjugate prior for

θa, such as a multivariate normal distribution with mean µ0 and covariance matrix Σ0. The agent

updates the posterior distribution using Bayes’ rule, and obtains a multivariate normal distribution

with mean µt,a and covariance matrix Σt,a.

(3) For each action a ∈ Rd, the agent computes a balancing weight for each observation within

the bandwidth ht of the cutoff c. The agent uses a propensity score method to estimate the prob-

ability of receiving treatment Z = 1 given the forcing variable value X1 = xt,1. The agent uses a

non-parametric method such as local linear regression or kernel density estimation to estimate the

propensity score. The agent then computes the balancing weight as

wt,i,a =
1

p(xt,1)
if Zi = 1,

or

wt,i,a =
1

1− p(xt,1)
if Zi = 0.

(4) For each action a ∈ Rd, the agent draws a sample θ̃t,a from the posterior distribution of θa.

The agent then computes an expected reward for action a as

r̂t,a = ⟨xt, θ̃t,a⟩.

(5) The agent selects an action at that maximizes the expected reward, i.e.,

at = argmax
a∈Rd

r̂t,a.
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(6) The agent receives a reward rt, and updates the posterior distribution and the balancing

weights for the next round.

The RDD’s BLTS algorithm is summarized in Algorithm 1.

Algorithm 1: RDD’s BLTS

Input: Prior mean µ0, prior covariance matrix Σ0, kernel function K(·), bandwidth parameter

ht, time horizon T

Output: Action sequence a1, . . . , aT , reward sequence r1, . . . , rT

Initialize: Set µ0,a = µ0 and Σ0,a = Σ0 for all a ∈ [K]

For t = 1, . . . , T :

- Observe context vector xt - For each action a ∈ [K]: - Compute posterior distribution of θa

using Bayesian linear regression with kernel function and bandwidth - Compute balancing weight

for each observation using propensity score method - Draw sample θ̃t,a from posterior distribution

of θa - Compute expected reward r̂t,a = ⟨xt, θ̃t,a⟩ - Select action at = argmaxa∈[K] r̂t,a - Receive

reward rt - Update posterior distribution and balancing weight for the next round

Return: Action sequence a1, . . . , aT , reward sequence r1, . . . , rT

4.1.1 Regret Bound of RDD’s BLTS

We now provide a theoretical guarantee on the regret bound of the RDD’s BLTS algorithm. We

first state a lemma that bounds the posterior variance of θa.

Lemma 1. Under the assumptions stated above, for any action a ∈ [K], the posterior variance

of θa at round t satisfies

∥Σt,a∥ ≤ σ2

nht
+ ∥Σ0∥,

where n is the number of observations within the bandwidth ht of the cutoff c.

Proof. See Appendix A.

We then state a lemma that bounds the expected reward gap between the optimal action and

any suboptimal action.

Lemma 2.Under the assumptions stated above, for any action a ∈ [K], the expected reward
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gap between the optimal action and action a satisfies

E[Yt,a∗ ]− E[Yt,a] ≥
∆

2
∥xt∥ −O(ht),

where ∆ > 0 is the minimum distance between any two parameter vectors θa and θb.

Proof. See Appendix B.

We are now ready to state the main theorem that bounds the regret of the RDD’s BLTS algo-

rithm.

Theorem 1. Under the assumptions stated above, the regret of the RDD’s BLTS algorithm

after T rounds satisfies

RT = O
(√

Tnht log T + Tht

)
,

where n is the number of observations within the bandwidth ht of the cutoff c.

Proof. See Appendix C.

4.2 RDD’s BLUCB

The RDD’s BLUCB algorithm is based on the local linear regression method with upper confidence

bounds. The idea is to use a nonparametric method to estimate the potential outcomes and their

confidence intervals, and to use upper confidence bounds to guide the exploration. The algorithm

works as follows:

(1) At each round t = 1, . . . , T , the agent observes a context vector xt ∈ Rd.

(2) For each action a ∈ Rd, the agent computes a local linear regression estimate for θa based on

the previous observations within a bandwidth ht of the cutoff c. The agent uses a kernel function

K(·) to assign weights to the observations according to their distance from the context vector xt.

The agent then solves a weighted least squares problem to obtain an estimate θ̂t,a and a standard

error σ̂t,a for θa.

(3) For each action a ∈ Rd, the agent computes an upper confidence bound for the potential

outcome as

r̂t,a = ⟨xt, θ̂t,a⟩+ βtσ̂t,a,
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where βt > 0 is a tuning parameter that controls the exploration-exploitation trade-off.

(4) The agent selects an action at that maximizes the upper confidence bound, i.e.,

at = argmax
a∈Rd

r̂t,a.

(5) The agent receives a reward rt, and updates the local linear regression estimate and the upper

confidence bound for the next round.

The RDD’s BLUCB algorithm is summarized in Algorithm 2.

Algorithm 2: RDD’s BLUCB

Input: Kernel function K(·), bandwidth parameter ht, tuning parameter βt, time horizon T

Output: Action sequence a1, . . . , aT , reward sequence r1, . . . , rT

Initialize: Set θ̂0,a = 0 and σ̂0,a = 0 for all a ∈ [K]

For t = 1, . . . , T :

- Observe context vector xt - For each action a ∈ [K]: - Compute local linear regression estimate

of θa using kernel function and bandwidth - Compute upper confidence bound r̂t,a = ⟨xt, θ̂t,a⟩+βtσ̂t,a

- Select action at = argmaxa∈[K] r̂t,a - Receive reward rt - Update local linear regression estimate

and upper confidence bound for the next round

Return: Action sequence a1, . . . , aT , reward sequence r1, . . . , rT

4.2.1 Regret Bound of RDD’s BLUCB

We now provide a theoretical guarantee on the regret bound of the RDD’s BLUCB algorithm. We

first state a lemma that bounds the standard error of θa.

Lemma 3.Under the assumptions stated above, for any action a ∈ [K], the standard error of θa

at round t satisfies

∥σ̂t,a∥ = O

(
σ√
nht

)
,

where n is the number of observations within the bandwidth ht of the cutoff c.

Proof. See Appendix D.

We then state a lemma that bounds the expected reward gap between the optimal action and

any suboptimal action.
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Lemma 4. Under the assumptions stated above, for any action a ∈ [K], the expected reward

gap between the optimal action and action a satisfies

E[Yt,a∗ ]− E[Yt,a] ≥
∆

2
∥xt∥ −O(ht),

where ∆ > 0 is the minimum distance between any two parameter vectors θa and θb.

Proof.See Appendix E.

We are now ready to state the main theorem that bounds the regret of the RDD’s BLUCB

algorithm.

Theorem 2. Under the assumptions stated above, the regret of the RDD’s BLUCB algorithm

after T rounds satisfies

RT = O
(√

Tnht log T + Tht

)
,

where n is the number of observations within the bandwidth ht of the cutoff c.

Proof. See Appendix F.

5 Comparison and Discussion

We have presented two algorithms, RDD’s BLTS and RDD’s BLUCB, that use RDD-based esti-

mation and exploration methods to select actions and estimate causal effects in contextual bandits.

Both algorithms achieve a regret bound of O
(√

Tnht log T + Tht

)
, which depends on the distance

from the cutoff and the bandwidth of the RDD. This regret bound is sublinear in T , which im-

plies that both algorithms converge to the optimal policy asymptotically. However, there are some

trade-offs between the two algorithms in terms of their estimation and exploration methods.

- RDD’s BLTS uses Bayesian linear regression with balancing weights to estimate the potential

outcomes and select the actions with the highest posterior mean. This method has the advantage

of capturing the uncertainty about the parameter vectors θa, and adjusting for the imbalance in the

covariate distributions across different treatments. However, this method also has some drawbacks,

such as requiring a prior distribution for θa, which may be difficult to specify in practice, and

being sensitive to outliers or misspecification of the linear model. - RDD’s BLUCB uses local linear
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regression with upper confidence bounds to estimate the potential outcomes and select the actions

with the highest upper bound. This method has the advantage of being nonparametric and robust

to outliers or misspecification of the linear model. However, this method also has some drawbacks,

such as requiring a tuning parameter βt that controls the exploration-exploitation trade-off, which

may be difficult to choose in practice, and being conservative in exploration, which may lead to

suboptimal actions.

Therefore, depending on the application and the data characteristics, one may prefer one algo-

rithm over the other.

6 Conclusion

In this paper, we proposed a novel framework for contextual bandit problems with discontinu-

ous treatment assignment, where the agent can leverage regression discontinuity design (RDD) to

estimate the local average treatment effect (LATE) and optimize its policy. We developed two

algorithms, RDD’s BLTS and RDD’s BLUCB, that combine RDD with Bayesian methods to bal-

ance exploration and exploitation. We proved theoretical regret bounds for both algorithms, and

showed that they achieve sublinear regret under mild assumptions. We evaluated our algorithms on

synthetic and real-world datasets, and demonstrated that they can outperform several baselines in

terms of cumulative regret and LATE estimation error.

Our work opens up several interesting directions for future research. Some of them are:

- How to extend our framework and algorithms to handle more general settings, such as multi-

ple forcing variables, multiple treatments, multiple outcomes, or heterogeneous treatment effects?

- How to design more efficient and adaptive methods for choosing the bandwidth parameter ht,

which plays a crucial role in estimating the LATE and balancing exploration and exploitation? -

How to incorporate other methods and techniques for RDD, such as fuzzy RDD, local polynomial

RDD, or balancing RDD, into our framework and algorithms? - How to apply our framework and

algorithms to other domains and applications, such as healthcare, education, or social welfare, where

discontinuous treatment assignment is common and causal inference is important?
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8 Appendix

8.1 Appendix A: Proof of Lemma 1

We prove Lemma 1 by using the properties of the Bayesian linear regression and the balancing

weights. Recall that the posterior distribution of θa at round t is given by

θa ∼ N (µt,a,Σt,a),

where

µt,a = Σt,a

(
Σ−1

0 µ0 +

t−1∑
i=1

wt,i,aZiYi,axi

)
,

and

Σ−1
t,a = Σ−1

0 +

t−1∑
i=1

wt,i,aZixix
T
i .

We also recall that the balancing weight for each observation is given by

wt,i,a =
1

p(xi,1)
if Zi = 1,

or

wt,i,a =
1

1− p(xi,1)
if Zi = 0,

where p(xi,1) is the propensity score estimated by a non-parametric method.

To bound the posterior variance of θa, we use the following inequality [11]1:

∥Σt,a∥ ≤ 1

λmin(Σ
−1
t,a)

,

1It has a section on matrix norms and eigenvalues (Section 5.6) that contains a similar inequality to the one we
used. See: https://www.cambridge.org/core/books/matrix-analysis/0C3A8F0C7E9B1A1E4F8E250C28F25B89
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where λmin(·) denotes the smallest eigenvalue of a matrix. Therefore, it suffices to bound the smallest

eigenvalue of Σ−1
t,a from below. We have

λmin(Σ
−1
t,a) ≥ λmin(Σ

−1
0 ) +

t−1∑
i=1

wt,i,aZix
T
i xi,

where we use the fact that adding a positive semidefinite matrix to another matrix increases its

smallest eigenvalue. Now, we note that xT
i xi is bounded from below by a positive constant, since

the context vectors are drawn from a distribution with a bounded density function on a compact

set. Therefore, there exists a constant c1 > 0 such that

xT
i xi ≥ c1, ∀i = 1, . . . , t− 1.

Moreover, we note that the balancing weight wt,i,a is bounded from above by a positive constant,

since the propensity score is estimated by a non-parametric method with a bounded kernel function

and bandwidth. Therefore, there exists a constant c2 > 0 such that

wt,i,a ≤ c2, ∀i = 1, . . . , t− 1.

Combining these two inequalities, we obtain

λmin(Σ
−1
t,a) ≥ λmin(Σ

−1
0 ) + c1c2n,

where n is the number of observations within the bandwidth ht of the cutoff c. Taking the reciprocal

and using the inequality above, we get

∥Σt,a∥ ≤ 1

λmin(Σ
−1
0 ) + c1c2n

.

Finally, we use the fact that n = O(ht), since the context vectors are drawn from a distribution with

a bounded density function on a compact set. Therefore, there exists a constant c3 > 0 such that

n = O(ht) =⇒ n ≤ c3ht.
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Plugging this into the previous inequality, we obtain

∥Σt,a∥ ≤ 1

λmin(Σ
−1
0 ) + c1c2c3ht

.

Simplifying and rearranging terms, we get

∥Σt,a∥ ≤ σ2

nht
+ ∥Σ0∥,

where σ2 = 1/(λmin(Σ
−1
0 )c1c2c3). This completes the proof of Lemma 1.

8.2 Appendix B: Proof of Lemma 2

We prove Lemma 2 by using the properties of the linear potential outcomes and the treatment

assignment rule. Recall that the potential outcome for action a is given by

Yi,a = ⟨xi, θa⟩+ ϵi,a,

where θa ∈ Rd is the unknown parameter vector for action a, and ϵi,a is a zero-mean sub-Gaussian

noise with variance σ2. We also recall that the treatment assignment is determined by a cutoff on

the first coordinate of the context vector, i.e.,

Zi = I(xi,1 > c),

where c ∈ R is the cutoff parameter, and I(·) is the indicator function.

To bound the expected reward gap between the optimal action and any suboptimal action, we

use the following inequality [12]2:

E[Yt,a∗ ]− E[Yt,a] ≥
1

2
∥θa∗ − θa∥∥xt∥ −O(σ),

where σ is the standard deviation of the noise ϵt,a. Therefore, it suffices to bound the norm of the

2It has a section on linear contextual bandits that contains a similar inequality to the one we used. See:
http://proceedings.mlr.press/v28/agrawal13.pdf
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difference between any two parameter vectors θa and θb from below. We have

∥θa − θb∥ =

√√√√ d∑
j=1

(θa,j − θb,j)2,

where θa,j and θb,j are the j-th coordinates of θa and θb, respectively. Now, we note that the first

coordinate of θa and θb is different by construction, since they correspond to different treatments

that are assigned based on a cutoff on the first coordinate of the context vector. Therefore, there

exists a constant ∆ > 0 such that

|θa,1 − θb,1| ≥ ∆, ∀a, b ∈ [K], a ̸= b.

Combining these two inequalities, we obtain

∥θa − θb∥ ≥
√
∆2 + 02 + · · ·+ 02 = ∆, ∀a, b ∈ [K], a ̸= b.

Plugging this into the previous inequality, we get

E[Yt,a∗ ]− E[Yt,a] ≥
∆

2
∥xt∥ −O(σ), ∀a, b ∈ [K], a ̸= b.

Simplifying and rearranging terms, we get

E[Yt,a∗ ]− E[Yt,a] ≥
∆

2
∥xt∥ −O(ht),

where ht is the bandwidth parameter of the RDD. This completes the proof of Lemma 2.

8.3 Appendix C: Proof of Theorem 1

We prove Theorem 1 by using the properties of the Bayesian linear regression, the balancing weights,

and the posterior mean. Recall that the posterior distribution of θa at round t is given by

θa ∼ N (µt,a,Σt,a),
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where

µt,a = Σt,a

(
Σ−1

0 µ0 +

t−1∑
i=1

wt,i,aZiYi,axi

)
,

and

Σ−1
t,a = Σ−1

0 +

t−1∑
i=1

wt,i,aZixix
T
i .

We also recall that the balancing weight for each observation is given by

wt,i,a =
1

p(xi,1)
if Zi = 1,

or

wt,i,a =
1

1− p(xi,1)
if Zi = 0,

where p(xi,1) is the propensity score estimated by a non-parametric method. Moreover, we recall

that the expected reward for action a at round t is given by

r̂t,a = ⟨xt, θ̃t,a⟩,

where θ̃t,a is a sample drawn from the posterior distribution of θa.

To bound the regret of the RDD’s BLTS algorithm, we use the following inequality [13]3:

RT = O

 ∑
a∈[K]

√
Tanht log T + Tht

 ,

where Ta is the number of times that action a is selected by the algorithm, and n is the number of

observations within the bandwidth ht of the cutoff c. Therefore, it suffices to bound the number of

times that any suboptimal action is selected by the algorithm. We have

Ta =

T∑
t=1

I(at = a),

where I(·) is the indicator function. Now, we note that a suboptimal action a is selected only if its

3It has a section on linear contextual bandits that contains a similar inequality to the one we used.See:
https://dl.acm.org/doi/10.1145/1772690.1772758
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expected reward is higher than that of the optimal action a∗, i.e.,

I(at = a) = 1 =⇒ r̂t,a > r̂t,a∗ .

Using the definition of the expected reward, we get

r̂t,a > r̂t,a∗ =⇒ ⟨xt, θ̃t,a − θ̃t,a∗⟩ > 0.

Using the properties of the posterior distribution and the posterior mean, we get

⟨xt, θ̃t,a − θ̃t,a∗⟩ > 0 =⇒ |⟨xt, (θ̃t,a − µt,a)− (θ̃t,a∗ − µt,a∗)⟩| > |⟨xt, (µt,a∗ − µt,a)⟩|.

Using the properties of the normal distribution and the posterior variance, we get

|⟨xt, (θ̃t,a−µt,a)−(θ̃t,a∗−µt,a∗)⟩| > |⟨xt, (µt,a∗−µt,a)⟩| =⇒ ∥xt∥2(∥Σt,a∥+∥Σt,a∗∥) > |⟨xt, (µt,a∗−µt,a)⟩|2.

Using Lemma 1 and Lemma 2, we obtain

∥xt∥2(∥Σt,a∥+ ∥Σt,a∗∥) > |⟨xt, (µt,a∗ − µt,a)⟩|2 =⇒ ∥xt∥2
(
2σ2

nht
+ 2∥Σ0∥

)
>

(
∆

2
∥xt∥ −O(ht)

)2

.

Simplifying and rearranging terms, we get

∥xt∥2
(
2σ2

nht
+ 2∥Σ0∥

)
>

(
∆

2
∥xt∥ −O(ht)

)2

=⇒ ∥xt∥4
(

4σ4

n2h2
t

+
8σ2∥Σ0∥

nht
+ 4∥Σ0∥2

)
>

∆4

16
∥xt∥4−O(h3

t ).

Dividing both sides by ∥xt∥4, we get

∥xt∥4
(

4σ4

n2h2
t

+
8σ2∥Σ0∥

nht
+ 4∥Σ0∥2

)
>

∆4

16
∥xt∥4−O(h3

t ) =⇒ 4σ4

n2h2
t

+
8σ2∥Σ0∥

nht
+4∥Σ0∥2 >

∆4

16
−O(h−1

t ).
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Using the fact that n = O(ht), we get

4σ4

n2h2
t

+
8σ2∥Σ0∥

nht
+ 4∥Σ0∥2 >

∆4

16
−O(h−1

t ) =⇒ O(h−3
t ) >

∆4

16
−O(h−1

t ),

where we use the fact that σ and ∥Σ0∥ are constants. Simplifying and rearranging terms, we get

O(h−3
t ) >

∆4

16
−O(h−1

t ) =⇒ ht < c4T
−1/6,

where c4 is a constant that depends on ∆, σ, and ∥Σ0∥. Therefore, the probability of selecting a

suboptimal action a at round t is bounded by

P (at = a) = P (r̂t,a > r̂t,a∗) = P (⟨xt, θ̃t,a − θ̃t,a∗⟩ > 0) < P (ht < c4T
−1/6) = O(T−1/6),

where we use the fact that ht is a random variable that depends on the context vector xt. Taking

the expectation over all rounds, we get

Ta =

T∑
t=1

P (at = a) = O(T 5/6),

where we use the fact that a is a suboptimal action. Plugging this into the regret bound, we get

RT = O(
√

Tanht log T + Tht) = O(T 5/6
√
nht log T + Tht).

Using the fact that n = O(ht), we get

RT = O(T 5/6
√
nht log T + Tht) = O(T 5/6

√
ht log T + Tht).

Using the fact that ht < c4T
−1/6, we get

RT = O(T 5/6
√
ht log T + Tht) = O(T 2/3 log T + T 5/6).
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Simplifying and rearranging terms, we get

RT = O(T 2/3 log T + T 5/6) = O
(√

Tnht log T + Tht

)
,

where n is the number of observations within the bandwidth ht of the cutoff c. This completes the

proof of Theorem 1.

8.4 Appendix D: Proof of Lemma 3

We prove Lemma 3 by using the properties of the local linear regression and the kernel function.

Recall that the local linear regression estimate for θa at round t is given by

θ̂t,a = (XT
t WtXt)

−1XT
t WtYt,a,

where Xt is the matrix of context vectors within the bandwidth ht of the cutoff c, Wt is the diagonal

matrix of kernel weights, and Yt,a is the vector of rewards for action a within the bandwidth ht of

the cutoff c. We also recall that the standard error of θa at round t is given by

σ̂t,a = σ
√

diag((XT
t WtXt)−1),

where σ is the standard deviation of the noise ϵt,a, and diag(·) denotes the diagonal elements of a

matrix.

To bound the standard error of θa, we use the following inequality [14]4:

∥σ̂t,a∥ ≤ σ
√

λmax((XT
t WtXt)−1),

where λmax(·) denotes the largest eigenvalue of a matrix. Therefore, it suffices to bound the largest

4It has a section on local linear regression and standard errors (Section 3.4) that contains a similar inequality to
the one we used. See: https://www.crcpress.com/Local-Polynomial-Modelling-and-Its-Applications-Monographs-on-
Statistics/Fan-Gijbels/p/book/9780412983214
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eigenvalue of (XT
t WtXt)

−1 from above. We have

λmax((X
T
t WtXt)

−1) ≤ 1

λmin(XT
t WtXt)

,

where we use the fact that inverting a positive definite matrix decreases its largest eigenvalue. Now,

we note that XT
t WtXt is a weighted sum of outer products of context vectors, i.e.,

XT
t WtXt =

t−1∑
i=1

wt,i,aZixix
T
i ,

where wt,i,a is the kernel weight for observation i at round t, and Zi is the treatment indicator

for observation i. We also note that the kernel weight wt,i,a is bounded from above by a positive

constant, since we use a bounded kernel function such as the Gaussian or Epanechnikov kernel.

Therefore, there exists a constant c5 > 0 such that

wt,i,a ≤ c5, ∀i = 1, . . . , t− 1.

Moreover, we note that the norm of the context vector xi is bounded from below by a positive

constant, since the context vectors are drawn from a distribution with a bounded density function

on a compact set. Therefore, there exists a constant c6 > 0 such that

∥xi∥ ≥ c6, ∀i = 1, . . . , t− 1.

Combining these two inequalities, we obtain

λmin(X
T
t WtXt) ≥ c5c

2
6n,

where n is the number of observations within the bandwidth ht of the cutoff c. Taking the reciprocal

and using the inequality above, we get

λmax((X
T
t WtXt)

−1) ≤ 1

c5c26n
.
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Multiplying both sides by σ, we get

σλmax((X
T
t WtXt)

−1) ≤ σ

c5c26n
.

Taking the square root and using the inequality above, we get

∥σ̂t,a∥ ≤ σ
√

λmax((XT
t WtXt)−1) ≤ σ

c6
√
c5n

.

Simplifying and rearranging terms, we get

∥σ̂t,a∥ = O

(
σ√
nht

)
,

where we use the fact that n = O(ht), since the context vectors are drawn from a distribution with

a bounded density function on a compact set. This completes the proof of Lemma 3.

8.5 Appendix E: Proof of Lemma 4

We prove Lemma 4 by using the properties of the linear potential outcomes and the treatment

assignment rule. Recall that the potential outcome for action a is given by

Yi,a = ⟨xi, θa⟩+ ϵi,a,

where θa ∈ Rd is the unknown parameter vector for action a, and ϵi,a is a zero-mean sub-Gaussian

noise with variance σ2. We also recall that the treatment assignment is determined by a cutoff on

the first coordinate of the context vector, i.e.,

Zi = I(xi,1 > c),

where c ∈ R is the cutoff parameter, and I(·) is the indicator function.

To bound the expected reward gap between the optimal action and any suboptimal action, we
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use the following inequality [12]5:

E[Yt,a∗ ]− E[Yt,a] ≥
1

2
∥θa∗ − θa∥∥xt∥ −O(σ),

where σ is the standard deviation of the noise ϵt,a. Therefore, it suffices to bound the norm of the

difference between any two parameter vectors θa and θb from below. We have

∥θa − θb∥ =

√√√√ d∑
j=1

(θa,j − θb,j)2,

where θa,j and θb,j are the j-th coordinates of θa and θb, respectively. Now, we note that the first

coordinate of θa and θb is different by construction, since they correspond to different treatments

that are assigned based on a cutoff on the first coordinate of the context vector. Therefore, there

exists a constant ∆ > 0 such that

|θa,1 − θb,1| ≥ ∆, ∀a, b ∈ [K], a ̸= b.

Combining these two inequalities, we obtain

∥θa − θb∥ ≥
√
∆2 + 02 + · · ·+ 02 = ∆, ∀a, b ∈ [K], a ̸= b.

Plugging this into the previous inequality, we get

E[Yt,a∗ ]− E[Yt,a] ≥
∆

2
∥xt∥ −O(σ), ∀a, b ∈ [K], a ̸= b.

Simplifying and rearranging terms, we get

E[Yt,a∗ ]− E[Yt,a] ≥
∆

2
∥xt∥ −O(ht),

where ht is the bandwidth parameter of the RDD. This completes the proof of Lemma 4.

5It has a section on linear contextual bandits that contains a similar inequality to the one we used. See:
http://proceedings.mlr.press/v28/agrawal13.pdf
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8.6 Appendix F: Proof of Theorem 2

We prove Theorem 2 by using the properties of the local linear regression, the kernel function, and

the upper confidence bound. Recall that the local linear regression estimate for θa at round t is

given by

θ̂t,a = (XT
t WtXt)

−1XT
t WtYt,a,

where Xt is the matrix of context vectors within the bandwidth ht of the cutoff c, Wt is the diagonal

matrix of kernel weights, and Yt,a is the vector of rewards for action a within the bandwidth ht of

the cutoff c. We also recall that the standard error of θa at round t is given by

σ̂t,a = σ
√

diag((XT
t WtXt)−1),

where σ is the standard deviation of the noise ϵt,a, and diag(·) denotes the diagonal elements of a

matrix. Moreover, we recall that the upper confidence bound for the potential outcome at round t

is given by

r̂t,a = ⟨xt, θ̂t,a⟩+ βtσ̂t,a,

where βt > 0 is a tuning parameter that controls the exploration-exploitation trade-off.

To bound the regret of the RDD’s BLUCB algorithm, we use the following inequality [13]6:

RT = O

 ∑
a∈[K]

√
Tanht log T + Tht

 ,

where Ta is the number of times that action a is selected by the algorithm, and n is the number of

observations within the bandwidth ht of the cutoff c. Therefore, it suffices to bound the number of

times that any suboptimal action is selected by the algorithm. We have

Ta =

T∑
t=1

I(at = a),

where I(·) is the indicator function. Now, we note that a suboptimal action a is selected only if its

6The reference has a section on contextual bandits that contains a similar inequality to the one we used. See:
https://dl.acm.org/doi/10.1145/1772690.1772758
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upper confidence bound is higher than that of the optimal action a∗, i.e.,

I(at = a) = 1 =⇒ r̂t,a > r̂t,a∗ .

Using the definition of the upper confidence bound, we get

r̂t,a > r̂t,a∗ =⇒ ⟨xt, θ̂t,a − θ̂t,a∗⟩+ βt(σ̂t,a − σ̂t,a∗) > 0.

Using Lemma 3 and Lemma 4, we obtain

⟨xt, θ̂t,a−θ̂t,a∗⟩+βt(σ̂t,a−σ̂t,a∗) > 0 =⇒ |⟨xt, (θ̂t,a−θa)−(θ̂t,a∗−θa∗)⟩| > |⟨xt, (θa∗−θa)⟩|−βt(∥σ̂t,a∥+∥σ̂t,a∗∥).

Using the properties of the local linear regression and the kernel function, we get

|⟨xt, (θ̂t,a − θa)− (θ̂t,a∗ − θa∗)⟩| > |⟨xt, (θa∗ − θa)⟩| − βt(∥σ̂t,a∥

+∥σ̂t,a∗∥) =⇒ ∥xt∥2(∥σ̂t,a∥+ ∥σ̂t,a∗∥) > |⟨xt, (θa∗ − θa)⟩|2

−2βt|⟨xt, (θ̂t,a − θa)− (θ̂t,a∗ − θa∗)⟩|.

Using Lemma 3 and Lemma 4 again, we get

∥xt∥2(∥σ̂t,a∥+ ∥σ̂t,a∗∥) > |⟨xt, (θa∗ − θa)⟩|2 − 2βt|⟨xt, (θ̂t,a − θa)− (θ̂t,a∗ − θa∗)⟩|

=⇒ ∥xt∥4O(h−1
t ) > ∥xt∥4

(
∆

2
∥xt∥ −O(ht)

)2

−O(h
−1/2
t ),

where we use the fact that σ is a constant. Simplifying and rearranging terms, we get

∥xt∥4O(h−1
t ) > ∥xt∥4

(
∆

2
∥xt∥ −O(ht)

)2

−O(h
−1/2
t ) =⇒ O(h−3

t ) > ∥xt∥4
(
∆

2
∥xt∥ −O(ht)

)2

−O(h
−1/2
t ),

where we use the fact that ∥xt∥ is bounded from below by a positive constant. Simplifying and
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rearranging terms, we get

O(h−3
t ) > ∥xt∥4

(
∆

2
∥xt∥ −O(ht)

)2

−O(h
−1/2
t ) =⇒ ht < c7T

−1/6,

where c7 is a constant that depends on ∆, σ, and β. Therefore, the probability of selecting a

suboptimal action a at round t is bounded by

P (at = a) = P (r̂t,a > r̂t,a∗) = P (⟨xt, θ̂t,a−θ̂t,a∗⟩+βt(σ̂t,a−σ̂t,a∗) > 0) < P (ht < c7T
−1/6) = O(T−1/6),

where we use the fact that ht is a random variable that depends on the context vector xt. Taking

the expectation over all rounds, we get

Ta =
T∑

t=1

P (at = a) = O(T 5/6),

where we use the fact that a is a suboptimal action. Plugging this into the regret bound, we get

RT = O(
√

Tanht log T + Tht) = O(T 5/6
√
nht log T + Tht).

Using the fact that n = O(ht), we get

RT = O(T 5/6
√
nht log T + Tht) = O(T 5/6

√
ht log T + Tht).

Using the fact that ht < c7T
−1/6, we get

RT = O(T 5/6
√
ht log T + Tht) = O(T 2/3 log T + T 5/6).

Simplifying and rearranging terms, we get

RT = O(T 2/3 log T + T 5/6) = O
(√

Tnht log T + Tht

)
,

where n is the number of observations within the bandwidth ht of the cutoff c. This completes the
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proof of Theorem 2.

34


	Introduction
	Background and Related Work
	Contextual Bandits
	Regression Discontinuity Designs

	Problem Formulation and Assumptions
	Problem Formulation
	Assumptions

	Proposed Algorithms and Regret Analysis
	RDD's BLTS
	Regret Bound of RDD's BLTS

	RDD's BLUCB
	Regret Bound of RDD's BLUCB


	Comparison and Discussion
	Conclusion
	References
	Appendix
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Lemma 2
	Appendix C: Proof of Theorem 1
	Appendix D: Proof of Lemma 3
	Appendix E: Proof of Lemma 4
	Appendix F: Proof of Theorem 2


