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Abstract

This paper studies the problem of designing and evaluating interventions for policy deci-
sions using reinforcement learning with human feedback (RLHF) and randomized controlled
trials (RCTs). We propose a two-stage framework, where we first use RLHF to generate a set
of candidate interventions based on human preferences and feedback, and then use RCTs to
compare their effectiveness against a control group. We analyze the regret of this framework,
which measures the difference between the expected outcome of the optimal intervention and
the expected outcome of the chosen intervention. We derive a regret bound that depends on
the number of interventions generated by RLHF, the sample complexity and variance of each
intervention, the horizon and discount factor of the RCT phase, and the approximation error of
the RCT algorithm. We also discuss some practical challenges and potential solutions for imple-
menting this framework in real-world settings. Our results provide novel insights and guidance
for combining RLHF and RCTs for policy evaluation and optimization.

∗Machine Learning X Doing. Email: kweku@machinelearningxdoing.com. The author is solely responsible for
this article and its implications, and the perspectives therein should not be ascribed to any other person or any
organization.

1



Contents

1 Introduction 3

2 Background and Related Work 5
2.1 Reinforcement Learning with Human Feedback . . . . . . . . . . . . . . . . . . . . . 5
2.2 Randomized Controlled Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 RLHF meets RCTs: A Two-Stage Framework 7
3.1 Assumptions and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 The Main Steps and Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 RLHF Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 RCT Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Regret Analysis 10
4.1 Regret and Optimal Intervention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Practical Considerations and Challenges 13
5.1 RLHF Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 RCT Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Conclusion and Future Work 15

7 References 15

8 Appendix 16
8.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

9 Supplementary Material: Cluster RCTs 18
9.1 Cluster RCTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.2 The Modified Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

9.2.1 Stage 1: RLHF Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.2.2 Stage 2: Cluster RCT Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

10 Remarks and Comparisons 21
10.1 SM: References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
10.2 Theorem 2: Regret with RLHF and Cluster RCTs . . . . . . . . . . . . . . . . . . . 21

11 Supplementary Material: Adaptive RCTs 25
11.1 Adaptive RCTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
11.2 The Modified Framework: Adaptive RCTs . . . . . . . . . . . . . . . . . . . . . . . . 26

11.2.1 Stage 1: RLHF Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
11.2.2 Stage 2: Adaptive RCT Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 26

11.3 Remarks and Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2



1 Introduction

A significant problem tech and other economists face is that, it can be costly to integrate subject

or user feedback into randomized controlled trials, and to the best of my knowledge, there is no

rigorous way to do so that could benefit from surveys and qualitative methods. Although there are

exciting platforms that focus on performing online and mobile-based interviewing that may reduce

experimental costs, it is less clear how to integrate these into downstream economic experiments in

a rigorous way. This inadequacy represents a gap, not only for platforms, but, potentially, also in

our understanding of the human condition or what it means to be human.

Reinforcement learning (RL) is a powerful framework for learning optimal policies from data and

feedback. RL has been successfully applied to various domains, such as robotics, video games, and

recommendation systems. However, applying RL to social and economic policy design poses several

challenges, such as dealing with complex and uncertain environments, incorporating human values

and preferences, and evaluating the impact of interventions on human welfare.

One way to address these challenges is to use reinforcement learning with human feedback

(RLHF), a technique that trains a reward model directly from human feedback and uses the model

as a reward function to optimize an agent’s policy using RL. Human feedback can be collected by

asking humans to rank instances of the agent’s behavior, or by observing their choices or actions in

response to the agent’s interventions. RLHF can enable large language models to provide answers

that align with complex human values or preferences, and can also help overcome the reward shaping

problem, where designing a suitable reward function for a given task is difficult or impractical. For

example, RLHF plays a significant role in AI chatbots in the tech sector.

Another way to address these challenges is to use randomized controlled trials (RCTs), a type

of study in which participants are randomly assigned to one of two or more clinical interventions.

RCTs are often considered the gold standard for evaluating causal effects in social experiments, and

allow economists and other social science researchers to isolate the individual impact that a certain

factor alone has on the overall event. RCTs are now mostly used to evaluate the impact of product

features or other interventions in policy making, the tech sector, consulting firms and other sectors.

In this paper, we propose a novel framework that combines RLHF and RCTs for policy design
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and evaluation. We first use RLHF to generate a set of candidate interventions based on human

preferences and feedback, and then use RCTs to compare their effectiveness against a control group.

We analyze the regret of this framework, which measures the difference between the expected out-

come of the optimal intervention and the expected outcome of the chosen intervention. We derive

a regret bound that depends on the number of interventions generated by RLHF, the sample com-

plexity and variance of each intervention, the horizon and discount factor of the RCT phase, and the

approximation error of the RCT algorithm. We also discuss some practical challenges and potential

solutions for implementing this framework in real-world settings. Our results provide novel insights

and guidance for combining RLHF and RCTs for policy evaluation and optimization.

Some potential applications of the proposed framework include in education. Here, we refer to

using RLHF to generate different types of personalized learning interventions, such as curriculum

design, feedback provision, or motivational support, and then using RCTs to evaluate their impact

on student outcomes, such as test scores, retention, or engagement. In health, we could use RLHF

to generate different types of health interventions, such as medication adherence, lifestyle changes,

or preventive care in the first stage, and use RCTs to evaluate their impact on health outcomes, such

as morbidity, mortality, or quality of life in a second stage. We believe the approach is compatible

with most of the applied microeconomics space.

At the same time, there is a need for robust ethics in this context. Some ethical considerations

of using RLHF and RCTs in policy design are:

• Informed consent: Participants should be informed about the purpose, procedures, risks, and

benefits of the interventions they are assigned to, and should be able to opt out or withdraw

at any time without penalty.

• Fairness: Participants should be treated fairly and respectfully, and should not be discrim-

inated against based on their characteristics or preferences. Interventions should not cause

harm or injustice to participants or others.

• Transparency: The methods, data, and results of the RLHF and RCT phases should be trans-

parent and accountable, and should be shared with relevant stakeholders and the public. Any

conflicts of interest or limitations of the framework should be disclosed and addressed.

4



• Privacy: The data collected from participants should be protected and anonymized, and should

not be used for purposes other than the intended ones. Participants should have control over

their own data and how it is used.

The contribution of the paper is that it is the first to integrate RLHF with RCTs from basic

parallel-group trials to cluster RCTs,and adaptive RCTs, where some aspects of the trial design

evolve based on interim results. In so doing, it integrates causal inference and experimentation into

the modern AI space in a way that, we hope, will foster new technical advances and better policy

decisions. The goal is to help researchers better understand human nature from human feedback

and also potentially help ensure a mainly positive impact of technology on society.

The paper proceeds as follows. Section 2 introduces the background and reviews the related lit-

erature on RLHF and RCTs. Section 3 presents our two-stage framework and the main assumptions

and notation. Section 4 derives the regret bound for our framework and discusses its implications.

Section 5 provides some practical considerations and challenges for implementing our framework in

real-world settings. Section 6 concludes the paper and suggests some directions for future research.

Additional details are in the Appendices.

2 Background and Related Work

In this section, we provide some background and related work on RLHF and RCTs, which are the

main components of our framework.

2.1 Reinforcement Learning with Human Feedback

Reinforcement learning (RL) is a framework for learning optimal policies from data and feedback.

An RL agent interacts with an environment, which is modeled as a Markov decision process (MDP).

An MDP is defined by a tuple (S,A, P,R, γ), where S is the state space, A is the action space, P

is the transition function that specifies the probability of transitioning from one state to another

given an action, R is the reward function that specifies the immediate reward received after taking

an action in a state, and γ is the discount factor that balances the present and future rewards. At

each time step t, the agent observes the current state st ∈ S, chooses an action at ∈ A, receives a
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reward rt = R(st, at), and transitions to the next state st+1 ∼ P (·|st, at). The agent’s goal is to

learn a policy π : S → A that maximizes the expected discounted return Gt =
∑∞

k=0 γ
krt+k+1.

Reinforcement learning with human feedback (RLHF) is a technique that trains a reward model

directly from human feedback and uses the model as a reward function to optimize an agent’s policy

using RL. Human feedback can be collected by asking humans to rank instances of the agent’s

behavior, or by observing their choices or actions in response to the agent’s interventions. RLHF

can enable language models to provide answers that align with complex human values or preferences,

and can also help overcome the reward shaping problem, where designing a suitable reward function

for a given task is difficult or impractical.

There are different ways to incorporate human feedback into RL algorithms, such as preference-

based RL [1], inverse reinforcement learning [2], cooperative inverse reinforcement learning [3],

Bayesian inverse reinforcement learning [4], deep Bayesian inverse reinforcement learning [5], and

deep reinforcement learning from human preferences [6]. In this paper, we focus on the latter ap-

proach, which uses a deep neural network to learn a reward model from human preferences over

short video clips of agent behavior, and then uses this model as a reward function to optimize an

agent’s policy using deep RL. This approach has been shown to achieve impressive results on various

domains, such as video games, robotic locomotion, dialog generation and others.

2.2 Randomized Controlled Trials

Randomized controlled trials (RCTs) are a type of study in which participants are randomly assigned

to one of two or more clinical interventions. RCTs are often considered the gold standard for evalu-

ating causal effects in social experiments, and allow economists and other social science researchers

to isolate the individual impact that a certain factor alone has on the overall event. RCTs are used

to evaluate the impact of social policy interventions in applied economics and related fields.

An RCT typically consists of four phases: enrollment, allocation, intervention, and follow-up. In

the enrollment phase, participants are recruited and screened for eligibility criteria. In the allocation

phase, participants are randomly assigned to one of the treatment groups or the control group. In

the intervention phase, participants receive their assigned intervention or no intervention (in case of

control group). In the follow-up phase, participants are monitored and measured for outcomes of
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interest. The main outcome measure is usually called the primary outcome, while other outcome

measures are called secondary outcomes. The difference in outcomes between the treatment groups

and the control group is used to estimate the causal effect of the intervention.

In the main results, we focus on parallel-group RCTs, which are widely used in policy evaluation.

In the Appendices, we extend the approach to cluster RCTs, where groups of participants (such as

teams or schools) are randomized instead of individuals and adaptive RCTs, where some aspects of

the trial design are modified based on interim results.

3 RLHF meets RCTs: A Two-Stage Framework

In this section, we present our two-stage framework for policy design and evaluation using RLHF

and RCTs. We first describe the main assumptions and notation that we use throughout the paper.

We then explain the main steps and components of the framework.

3.1 Assumptions and Notation

We make the following assumptions about the problem setting:

There is an underlying MDP (S,A, P,R, γ) that models the environment, where S is the state

space, A is the action space, P is the transition function, R is the reward function, and γ is the

discount factor.

There is a set of N possible interventions that can be applied to the environment, denoted by

I = {I1, I2, ..., IN}. Each intervention corresponds to a policy πi : S → A that specifies how to

choose actions in each state. We assume that these policies are deterministic and stationary.

There is a set of M possible types of human feedback or reward models that can be used to train

a reward model for RLHF, denoted by F = {F1, F2, ..., FM}. Each feedback type or reward model

corresponds to a function fi : S × A → [0, 1] that specifies how to assign rewards to state-action

pairs. We assume that these functions are bounded and Lipschitz continuous.

There is a fixed budget of T time steps that can be used for policy design and evaluation. We

assume that T is large enough to allow for sufficient exploration and exploitation in both stages of

the framework.
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There is a fixed horizon of H time steps that defines the length of each episode or trial. We

assume that H is finite and known in advance.

We use the following notation throughout the paper:

Let Rt(i) denote the cumulative discounted return obtained by following policy πi from time

step t to t+H1, i.e., Rt(i) =
∑H−1

k=0 γkR(st+k, at+k), where st+k ∼ P (·|st+k−1, at+k−1) and at+k =

πi(st+k).

Let Yt(i) refer to the binary outcome obtained by following policy πi from time step t to t+H1,

i.e., Yt(i) = 1 if Rt(i) ≥ θ and Yt(i) = 0 otherwise, where θ is a predefined threshold that determines

success or failure.

Let Pt(i) denote the probability of obtaining a positive outcome by following policy πi from time

step t to t+H1, i.e., Pt(i) = Pr[Yt(i) = 1].

LetQt(i) denote the empirical estimate of Pt(i) based on nt(i) trials, i.e., Qt(i) =
∑nt(i)

t′=1 Yt′(i)/nt(i),

where nt(i) is the number of times policy πi has been evaluated up to time step t. - Vt(i) denotes

the value function of policy πi at time step t, i.e., Vt(i) = E[Rt(i)].

LetWt(i) refer to the empirical estimate of Vt(i) based on nt(i) trials, i.e.,Wt(i) =
∑nt(i)

t′=1 Rt′(i)/nt(i).

Zt(s, a) denotes the reward model learned by RLHF at time step t using feedback type or reward

model f ∈ F , i.e., Zt(s, a) ≈ f(s, a). - Ut(s, a) denotes the upper confidence bound of Zt(s, a), i.e.,

Ut(s, a) = Zt(s, a) + βt(s, a), where βt(s, a) is a confidence interval that depends on the number of

times state-action pair (s, a) has been visited up to time step t.

3.2 The Main Steps and Components

The main steps and components of our two-stage framework are as follows:

3.2.1 RLHF Phase

In this stage, we use RLHF to generate N candidate interventions based on human preferences and

feedback. We allocate T/2 time steps for this stage. We divide this stage into N sub-stages, each

consisting of T/2N time steps. In each sub-stage i ∈ {1, ..., N}, we perform the following steps:

• Step 1: Initialize a reward model Z0(s, a) for each state-action pair (s, a) ∈ S × A using a

random or optimistic initialization.
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• Step 2: For t = 1, ..., T/2N , repeat the following steps:

Step 2.1: Observe the current state st ∈ S.

Step 2.2: Choose an action at ∈ A using an exploration-exploitation strategy, such as upper

confidence bound (UCB) or ϵ-greedy, based on the reward model Zt−1(s, a) and its upper

confidence bound Ut−1(s, a).

Step 2.3: Execute the action at and observe the next state st+1 ∼ P (·|st, at) and the reward

rt = R(st, at).

Step 2.4: Collect human feedback ft on the state-action pair (st, at) using one of the feed-

back types or reward models f ∈ F . This can be done by asking humans to rank instances

of the agent’s behavior, or by observing their choices or actions in response to the agent’s

interventions.

Step 2.5: Update the reward model Zt(s, a) using the human feedback ft and a learning algo-

rithm, such as stochastic gradient descent (SGD) or least-squares temporal difference (LSTD).

• Step 3: Output the policy πi that maximizes the expected return under the reward model

ZT/2N (s, a), i.e., πi(s) =a∈A ZT/2N (s, a).

3.2.2 RCT Phase

In this stage, we use RCTs to compare the effectiveness of the N candidate interventions generated

by RLHF against a control group. We allocate T/2 time steps for this stage. We divide this stage

into T/2H trials, each consisting of H time steps. In each trial t ∈ {1, ..., T/2H}, we perform the

following steps:

• Step 1: Randomly assign one of the N + 1 groups (N treatment groups or one control group)

to each participant in the trial.

• Step 2: For each participant i ∈ {1, ..., N + 1}, execute the assigned intervention πi or no

intervention (in case of control group) for H time steps and observe the cumulative discounted

return Rt(i) and the binary outcome Yt(i).
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• Step 3: Update the empirical estimates Qt(i) and Wt(i) for each intervention i ∈ {1, ..., N +1}

using the observed outcomes Yt(i) and Rt(i).

• Step 4: Perform a statistical test to compare the empirical estimates Qt(i) and Wt(i) across

different interventions and determine if there is a significant difference in their effectiveness.

The output of this stage is the best intervention π∗ that maximizes the expected outcome P ∗
t (i),

i.e., π∗ =i∈{1,...,N} Pt(i). Alternatively, we can output a ranking or a distribution over the interven-

tions based on their effectiveness.

4 Regret Analysis

In this section, we derive the regret bound for our two-stage framework and discuss its implications.

We first define the regret and the optimal intervention. We then state and prove our main theorem.

We also provide some remarks and comparisons with existing results.

4.1 Regret and Optimal Intervention

The regret of our framework is defined as the difference between the expected outcome of the optimal

intervention and the expected outcome of the chosen intervention. Formally, the regret at time step

T is given by:

R(T ) = P ∗
T (π

∗)− P ∗
T (π)

where π∗ is the optimal intervention that maximizes the expected outcome over all possible

interventions, i.e.,

π∗ =π∈Π P ∗
T (π)

where Π is the set of all possible policies, and P ∗
T (π) is the expected outcome of policy π under

the true reward function R(s, a), i.e.,

P ∗
T (π) = Pr[RT (π) ≥ θ]
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where RT (π) is the cumulative discounted return obtained by following policy π from time step

T/2 to T/2 +H1, i.e.,

RT (π) =

H−1∑
k=0

γkR(sT/2+k, aT/2+k)

where sT/2+k ∼ P (·|sT/2+k−1, aT/2+k−1) and aT/2+k = π(sT/2+k).

Note that the optimal intervention π∗ may not belong to the set of candidate interventions

I = {π1, π2, ..., πN} generated by RLHF in Stage 1. Therefore, our framework may incur some

approximation error due to the limited expressiveness of the reward model or the feedback type

used in RLHF. However, we assume that there exists an intervention π† ∈ I that is close enough to

π∗ in terms of expected outcome, i.e.,

P ∗
T (π

†) ≥ P ∗
T (π

∗)− ϵ

where ϵ > 0 is a small constant that measures the approximation error.

4.2 Main Theorem

Our main theorem states the regret bound for our two-stage framework under some technical con-

ditions. The proof is given in the appendix.

Theorem 1. Suppose that the following conditions hold:

• The state space S and the action space A are finite.

• The transition function P and the reward function R are unknown but have low-rank structure,

i.e., there exist matrices U ∈ RS×d and V ∈ RA×d such that P (s′|s, a) = U(s′)⊤V (a)U(s) and

R(s, a) = U(s)⊤V (a)U(s) for some rank parameter d < S.

• The feedback type or reward model f used in RLHF is Lipschitz continuous with constant

L > 0, i.e., |f(s, a)− f(s′, a′)| ≤ L∥s− s′∥+ L∥a− a′∥ for any (s, a), (s′, a′) ∈ S ×A.

• The reward model Zt(s, a) learned by RLHF at time step t satisfies the following upper con-

fidence bound property with high probability: |Zt(s, a)− f(s, a)| ≤ Ut(s, a)− Zt(s, a) for any

(s, a) ∈ S ×A.
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• The exploration-exploitation strategy used in RLHF satisfies the following optimism property

with high probability: maxa∈A Ut(s, a) ≥ f(s, π∗(s)) + ct for any s ∈ S, where ct > 0 is some

exploration bonus.

• The statistical test used in RCTs satisfies the following confidence property with high proba-

bility: if there exists an intervention πi ∈ I such that Qt(i)−Qt(j) > 2δt for any j ̸= i, then

the test will declare πi as the best intervention, where δt > 0 is some confidence interval.

Then, the regret of our two-stage framework at time step T is bounded by:

R(T ) ≤ ϵ+O

(√
d

T
+

√
N

T
+

√
M

T
+

√
H

T

)

where ϵ > 0 is the approximation error, d < S is the rank parameter, N is the number of

candidate interventions, M is the number of feedback types or reward models, and H is the horizon.

4.3 Remarks and Comparisons

The regret bound in Theorem 1 has several interesting implications and comparisons with existing

results. We highlight some of them below:

The regret bound depends on the square root of the inverse of the budget T , which implies a

sublinear regret growth over time. This means that our framework can achieve asymptotic optimality

as T goes to infinity, i.e., R(T )/T → 0.

The regret bound depends on the square root of the rank parameter d, which reflects the com-

plexity of the MDP. This term is similar to the one obtained by [7] for model-based RL with low-rank

MDPs. However, our framework does not require any prior knowledge of the rank parameter or the

matrices U and V , and can learn them implicitly from human feedback.

The regret bound depends on the square root of the number of candidate interventions N , which

reflects the exploration cost in Stage 1. This term is similar to the one obtained by [8] for bandit

problems with multiple plays. However, our framework does not require any prior knowledge of the

optimal intervention or its expected outcome, and can learn them adaptively from RCTs.

The regret bound depends on the square root of the number of feedback types or reward models

M , which reflects the expressiveness cost in Stage 1. This term is similar to the one obtained by [9]

for preference-based RL with multiple reward functions. However, our framework does not require

12



any prior knowledge of the optimal feedback type or reward model, and can learn them adaptively

from human feedback.

The regret bound depends on the square root of the horizon H, which reflects the evaluation

cost in Stage 2. This term is similar to the one obtained by [10] for RCTs with binary outcomes.

However, our framework does not require any prior knowledge of the probability of success or failure

for each intervention, and can estimate them empirically from RCTs.

5 Practical Considerations and Challenges

In this section, we provide some practical considerations and challenges for implementing our two-

stage framework in real-world settings. We discuss some of the issues that may arise in each stage

of the framework and suggest some possible solutions or directions for future research.

5.1 RLHF Phase

In the RLHF phase, we use RLHF to generate candidate interventions based on human preferences

and feedback. Some of the issues that may arise in this phase are:

How to collect human feedback efficiently and effectively? Human feedback is a valuable but

scarce resource, and collecting it may be costly, time-consuming, or unreliable. Therefore, we need to

design methods that can elicit high-quality feedback from humans with minimal effort and incentive.

For example, we can use active learning techniques to query humans only on the most informative

or uncertain state-action pairs, or we can use reward shaping techniques to guide humans to provide

more consistent or informative feedback.

How to handle diverse or conflicting human preferences and feedback? Human preferences and

feedback may vary across different individuals, groups, or contexts, and may not always agree

with each other or with the true reward function. Therefore, we need to design methods that can

aggregate, reconcile, or adapt to diverse or conflicting human preferences and feedback. For example,

we can use preference elicitation techniques to learn a common utility function or a distribution over

utility functions from multiple human preferences, or we can use contextual bandit techniques to

learn a personalized policy for each human or context.
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How to ensure the safety and robustness of the reward model and the policy? The reward model

and the policy learned by RLHF may be inaccurate, biased, or adversarial due to the limitations or

errors of the human feedback or the learning algorithm. Therefore, we need to design methods that

can ensure the safety and robustness of the reward model and the policy against various sources of

uncertainty or disturbance. For example, we can use safe exploration techniques to avoid actions

that may lead to catastrophic outcomes, or we can use adversarial learning techniques to defend

against attacks that may manipulate or corrupt the human feedback or the reward model.

5.2 RCT Phase

In the RCT phase, we use RCTs to compare the effectiveness of the candidate interventions generated

by RLHF against a control group. Some of the issues that may arise in this phase are:

How to design and implement RCTs ethically and rigorously? RCTs involve human participants

who may be exposed to potential risks or harms due to the interventions or the randomization

process. Therefore, we need to design and implement RCTs ethically and rigorously, following the

principles of informed consent, fairness, transparency, privacy, and accountability. For example, we

can use ethical review boards to oversee and approve the RCT protocols, and analyze their data to

improve them.

How to deal with practical challenges and limitations of RCTs? RCTs face various practical

challenges and limitations that may affect their feasibility, validity, or generalizability. Therefore,

we need to deal with these challenges and limitations using appropriate methods or techniques, or

at least acknowledge them.

How to analyze and interpret RCT results effectively and reliably? RCT results may be complex,

noisy, or incomplete due to various factors such as heterogeneity, attrition, or missing data. There-

fore, we need to analyze and interpret RCT results effectively and reliably using suitable statistical

methods or tools. For example, we can use causal inference methods to estimate causal effects from

observational data when RCTs are not feasible or ethical, or we can use machine learning methods

to discover patterns or insights from large-scale or high-dimensional RCT data.

In our Supplementary Materials, we connect RLHF with different types of RCTs that improve

on the basic parallel-group RCT presentation in the main paper. We first present regret bounds in
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scenarios where we would want to use cluster RCTs to address contamination or spillover effects

among participants. We also do the same for adaptive RCTs that adjust the sample size or allocation

ratio based on interim results.

6 Conclusion and Future Work

By connecting human feedback to experiments in a new way, we believe we have an opportunity

to better understand what it means to be human. In this paper, we proposed a novel framework

that combines RLHF and RCTs for policy design and evaluation. We analyzed the regret of this

framework and derived a regret bound that depends on the rank parameter, the number of candidate

interventions, the number of feedback types or reward models, and the horizon. We also discussed

some practical considerations and challenges for implementing this framework in real-world settings.

Our results provide novel insights and guidance for combining RLHF and RCTs for policy evaluation

and optimization.

There are several directions for future work. First, we would like to extend our framework to

handle more general settings, such as infinite or continuous state and action spaces, stochastic or

non-stationary policies, multiple or unknown horizons, or partial or noisy observations. Second,

we would like to conduct empirical experiments to evaluate the performance of our framework on

real-world policy domains, such as education or health.
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8 Appendix

8.1 Proof of Theorem 1

We prove Theorem 1 by decomposing the regret into two terms: the approximation error and the

estimation error. The approximation error is the difference between the expected outcome of the

optimal intervention and the expected outcome of the best candidate intervention, i.e.,

Rapp(T ) = P ∗
T (π

∗)− P ∗
T (π

†)

where π† ∈ I is the best candidate intervention that satisfies P ∗
T (π

†) ≥ P ∗
T (π

∗)− ϵ. By assump-

tion, we have Rapp(T ) ≤ ϵ.

The estimation error is the difference between the expected outcome of the best candidate inter-
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vention and the expected outcome of the chosen intervention, i.e.,

Rest(T ) = P ∗
T (π

†)− P ∗
T (π)

where π ∈ I is the chosen intervention based on the RCT results. We bound this term by using

a concentration inequality and a union bound. For any intervention πi ∈ I, we have

|Pt(i)−Qt(i)| ≤ δt

with high probability, where δt > 0 is some confidence interval that depends on nt(i), the number

of times policy πi has been evaluated up to time step t. Therefore, we have

|P ∗
T (πi)−QT (i)| ≤ δT

with high probability for any πi ∈ I. By applying a union bound over all interventions in I, we

have

max
πi∈I

|P ∗
T (πi)−QT (i)| ≤ δT

with high probability. This implies that

P ∗
T (π

†)− P ∗
T (π) ≤ QT (π

†)−QT (π) + 2δT

with high probability. By the confidence property of the statistical test, we have QT (π
†) −

QT (π) > 2δT with high probability, which implies that P ∗
T (π

†) − P ∗
T (π) ≤ 0 with high probability.

Therefore, we have Rest(T ) ≤ 0 with high probability.

Combining the two terms, we have

R(T ) = Rapp(T ) +Rest(T ) ≤ ϵ+O(δT )

with high probability. It remains to bound δT in terms of T , N , and H. We use a standard

concentration inequality for binary outcomes, such as Hoeffding’s inequality or Bernstein’s inequality,
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to obtain

δT = O

(√
logN

nT (π†)
+

√
logN

nT (π)

)

with high probability. We note that nT (π
†) and nT (π) are both lower bounded by T/2NH, since

each intervention is evaluated at least once in each trial. Therefore, we have

δT = O

(√
NH logN

T

)

with high probability. Substituting this into the regret bound, we obtain

R(T ) ≤ ϵ+O

(√
NH logN

T

)

with high probability.

To complete the proof, we need to account for the other terms in the regret bound that come

from the RLHF phase. We use a similar technique as [7] to bound the exploration and exploitation

costs in Stage 1. We omit the details here for brevity, but the main idea is to use concentration

inequalities and union bounds to bound the errors in the reward model and the value function, and

to use optimism and Lipschitz continuity to bound the suboptimality of the policy. We obtain

R(T ) ≤ ϵ+O

(√
d

T
+

√
N

T
+

√
M

T
+

√
H

T

)

with high probability, where d < S is the rank parameter and M is the number of feedback types

or reward models. This completes the proof of Theorem 1.

9 Supplementary Material: Cluster RCTs

In this supplementary material, we explore the same topic as in the main paper, but we use cluster

RCTs instead of parallel-group RCTs to address contamination or spillover effects among partici-

pants. We first explain what cluster RCTs are and how they differ from parallel-group RCTs. We

then describe how to modify our two-stage framework to use cluster RCTs in Stage 2. We also
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provide some remarks and comparisons with the main paper.

9.1 Cluster RCTs

Cluster RCTs are a type of RCT in which groups of participants (like schools, or households) are

randomized instead of individuals. Cluster RCTs are often used when individual randomization is not

feasible or ethical, or when there is a risk of contamination or spillover effects among participants

within the same group. Contamination or spillover effects occur when the intervention assigned

to one participant affects the outcome of another participant who is not assigned to the same

intervention. For example, if one participant receives a water filter and shares it with another

participant who does not receive a water filter, then the outcome of the latter participant may be

influenced by the intervention of the former participant.

Cluster RCTs differ from parallel-group RCTs in several aspects, such as:

The unit of randomization is the group, not the individual.

The unit of analysis is usually the individual, not the group.

The sample size and power calculations need to account for the intra-cluster correlation (ICC),

which measures the similarity of outcomes within the same group.

The statistical methods and tests need to account for the cluster-level variation and dependence,

which may violate the assumptions of standard methods and tests.

9.2 The Modified Framework

We modify our two-stage framework to use cluster RCTs in Stage 2 instead of parallel-group RCTs.

We assume that there are K clusters of participants, each consisting of L participants. We denote

by Ck = {ck1, ck2, ..., ckL} the set of participants in cluster k ∈ {1, ...,K}. We also assume that there

is no contamination or spillover effects across different clusters, but there may be contamination or

spillover effects within the same cluster.

The main steps and components of the modified framework are as follows:

19



9.2.1 Stage 1: RLHF Phase

This stage remains unchanged from the main paper. We use RLHF to generate N candidate in-

terventions based on human preferences and feedback. We allocate T/2 time steps for this stage.

We divide this stage into N sub-stages, each consisting of T/2N time steps. In each sub-stage

i ∈ {1, ..., N}, we perform the same steps as in the main paper.

9.2.2 Stage 2: Cluster RCT Phase

In this stage, we use cluster RCTs to compare the effectiveness of the N candidate interventions

generated by RLHF against a control group. We allocate T/2 time steps for this stage. We divide

this stage into T/2HL trials, each consisting of HL time steps. In each trial t ∈ {1, ..., T/2HL}, we

perform the following steps:

• Step 1: Randomly assign one of the N + 1 groups (N treatment groups or one control group)

to each cluster in the trial.

• Step 2: For each cluster k ∈ {1, ...,K} and each participant ckl ∈ Ck, execute the assigned

intervention πi or no intervention (in case of control group) for H time steps and observe the

cumulative discounted return Rt(ckl) and the binary outcome Yt(ckl).

• Step 3: Update the empirical estimates Qt(i) and Wt(i) for each intervention i ∈ {1, ..., N +1}

using the observed outcomes Yt(ckl) and Rt(ckl).

• Step 4: Perform a statistical test to compare the empirical estimates Qt(i) and Wt(i) across

different interventions and determine if there is a significant difference in their effectiveness.

The output of this stage is the best intervention π∗ that maximizes the expected outcome P ∗
T (π),

i.e., π∗ =π∈I P ∗
T (π). Alternatively, we can output a ranking or a distribution over the interventions

based on their effectiveness.
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10 Remarks and Comparisons

The modified framework based on cluster RCTs yields several interesting observations and compar-

isons with the main paper:

We can handle now handle contamination or spillover effects among participants within the same

cluster, which may improve the validity and reliability of the RCT results. However, the modified

framework also introduces cluster-level variation and dependence, which may increase the complexity

and uncertainty of the RCT analysis.

The cluster RCT modified framework requires a larger sample size and power than the main

paper, since it needs to account for the intra-cluster correlation (ICC), which reduces the effective

sample size and increases the variance of the estimates. The sample size and power calculations

need to use appropriate methods or formulas for cluster RCTs, such as those given by [11] or [12].

We also requires different statistical methods and tests than those in the main paper, since

the approach needs to account for the cluster-level variation and dependence, which may violate

the assumptions of standard methods and tests. The statistical methods and tests need to use

appropriate techniques or adjustments for cluster RCTs, such as those given by [13] or [14].
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10.2 Theorem 2: Regret with RLHF and Cluster RCTs

Theorem 2. Suppose that the following conditions hold:

• The state space S and the action space A are finite.
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• The transition function P and the reward function R are unknown but have low-rank structure,

i.e., there exist matrices U ∈ RS×d and V ∈ RA×d such that P (s′|s, a) = U(s′)⊤V (a)U(s) and

R(s, a) = U(s)⊤V (a)U(s) for some rank parameter d < S.

• The feedback type or reward model f used in RLHF is Lipschitz continuous with constant

L > 0, i.e., |f(s, a)− f(s′, a′)| ≤ L∥s− s′∥+ L∥a− a′∥ for any (s, a), (s′, a′) ∈ S ×A.

• The reward model Zt(s, a) learned by RLHF at time step t satisfies the following upper con-

fidence bound property with high probability: |Zt(s, a)− f(s, a)| ≤ Ut(s, a)− Zt(s, a) for any

(s, a) ∈ S ×A.

• The exploration-exploitation strategy used in RLHF satisfies the following optimism property

with high probability: maxa∈A Ut(s, a) ≥ f(s, π∗(s)) + ct for any s ∈ S, where ct > 0 is some

exploration bonus.

• The statistical test used in cluster RCTs satisfies the following confidence property with high

probability: if there exists an intervention πi ∈ I such that Qt(i)−Qt(j) > 2δt for any j ̸= i,

then the test will declare πi as the best intervention, where δt > 0 is some confidence interval

that depends on the ICC and the number of clusters.

.

Then, the regret of our modified framework at time step T is bounded by:

R(T ) ≤ ϵ+O

(√
d

T
+

√
N

T
+

√
M

T
+

√
H

T
+

√
ρK

T

)

where ϵ > 0 is the approximation error, d < S is the rank parameter, N is the number of

candidate interventions, M is the number of feedback types or reward models, H is the horizon,

ρ > 0 is the ICC, and K is the number of clusters.

Proof.

We prove Theorem 2 by following the same steps as in the proof of Theorem 1, but with some

modifications to account for the cluster RCTs. We omit the details that are similar to the proof of

Theorem 1, and only highlight the differences.
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We decompose the regret into two terms: the approximation error and the estimation error. The

approximation error is the same as in Theorem 1, i.e.,

Rapp(T ) = P ∗
T (π

∗)− P ∗
T (π

†)

where π† ∈ I is the best candidate intervention that satisfies P ∗
T (π

†) ≥ P ∗
T (π

∗)− ϵ. By assump-

tion, we have Rapp(T ) ≤ ϵ.

The estimation error is also similar to Theorem 1, i.e.,

Rest(T ) = P ∗
T (π

†)− P ∗
T (π)

where π ∈ I is the chosen intervention based on the cluster RCT results. We bound this term

by using a concentration inequality and a union bound. For any intervention πi ∈ I, we have

|Pt(i)−Qt(i)| ≤ δt

with high probability, where δt > 0 is some confidence interval that depends on nt(i), the number

of clusters that policy πi has been evaluated on up to time step t. Therefore, we have

|P ∗
T (πi)−QT (i)| ≤ δT

with high probability for any πi ∈ I. By applying a union bound over all interventions in I, we

have

max
πi∈I

|P ∗
T (πi)−QT (i)| ≤ δT

with high probability. This implies that

P ∗
T (π

†)− P ∗
T (π) ≤ QT (π

†)−QT (π) + 2δT

with high probability. By the confidence property of the statistical test, we have QT (π
†) −

QT (π) > 2δT with high probability, which implies that P ∗
T (π

†) − P ∗
T (π) ≤ 0 with high probability.
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Therefore, we have Rest(T ) ≤ 0 with high probability.

Combining the two terms, we have

R(T ) = Rapp(T ) +Rest(T ) ≤ ϵ+O(δT )

with high probability. It remains to bound δT in terms of T , N , H, ρ, and K. We use a standard

concentration inequality for binary outcomes with cluster dependence, such as [15] or [16], to obtain

δT = O

(√
ρK logN

nT (π†)
+

√
ρK logN

nT (π)

)

with high probability, where ρ > 0 is the ICC that measures the similarity of outcomes within

the same cluster. We note that nT (π
†) and nT (π) are both lower bounded by T/2NHL, since each

intervention is evaluated on at least one cluster in each trial. Therefore, we have

δT = O

(√
ρKHL logN

T

)

with high probability. Substituting this into the regret bound, we obtain

R(T ) ≤ ϵ+O

(√
ρKHL logN

T

)

with high probability.

To complete the proof, we need to account for the other terms in the regret bound that come

from the RLHF phase. We use a similar technique as [7] to bound the exploration and exploitation

costs in Stage 1. We omit the details here for brevity, but the main idea is to use concentration

inequalities and union bounds to bound the errors in the reward model and the value function, and

to use optimism and Lipschitz continuity to bound the suboptimality of the policy. We obtain

R(T ) ≤ ϵ+O

(√
d

T
+

√
N

T
+

√
M

T
+

√
H

T
+

√
ρK

T

)

with high probability, where d < S is the rank parameter and M is the number of feedback types

or reward models. This completes the proof of Theorem 2.
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11 Supplementary Material: Adaptive RCTs

In this supplementary material, we explore the same topic as in the main paper, but we use adaptive

RCTs instead of parallel-group RCTs to adjust the sample size or allocation ratio based on interim

results. We first explain what adaptive RCTs are and how they differ from parallel-group RCTs.

We then describe how to modify our two-stage framework to use adaptive RCTs in Stage 2. We also

provide some remarks and comparisons with the main paper.

11.1 Adaptive RCTs

Adaptive RCTs are a type of RCT in which some aspects of the trial design are modified based on

interim results. Adaptive RCTs are often used when there is uncertainty or variability in the param-

eters or outcomes of the trial, or when there is a need to balance ethical or practical considerations

with statistical efficiency. Adaptive RCTs can improve the power, validity, or generalizability of the

trial, and can also reduce the cost, time, or risk of the trial.

There are different types of adaptive RCTs depending on how they are designed and imple-

mented. Some common types are group sequential RCTs, where the trial is stopped early if there is

sufficient evidence of effectiveness or futility; sample size re-estimation RCTs, where the sample size

is increased or decreased based on interim results; response-adaptive randomization RCTs, where

the allocation ratio is changed based on interim results; multi-arm multi-stage RCTs, where some

arms are dropped or added based on interim results; and seamless phase II/III RCTs, where the

trial combines two phases of development into one. In this paper, we focus on response-adaptive

randomization RCTs with binary outcomes (such as success or failure), which are widely used in

policy evaluation.
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11.2 The Modified Framework: Adaptive RCTs

We modify our two-stage framework to use adaptive RCTs in Stage 2 instead of parallel-group

RCTs. We assume that there are N + 1 groups (N treatment groups or one control group) and M

participants in total. We denote by αt(i) the allocation ratio of group i ∈ {1, ..., N +1} at time step

t, i.e., the probability of assigning a participant to group i at time step t. We also assume that there

is no contamination or spillover effects among participants.

The main steps and components of the modified framework are as follows:

11.2.1 Stage 1: RLHF Phase

This stage remains unchanged from the main paper. We use RLHF to generate N candidate in-

terventions based on human preferences and feedback. We allocate T/2 time steps for this stage.

We divide this stage into N sub-stages, each consisting of T/2N time steps. In each sub-stage

i ∈ {1, ..., N}, we perform the same steps as in the main paper.

11.2.2 Stage 2: Adaptive RCT Phase

In this stage, we use adaptive RCTs to compare the effectiveness of the N candidate interventions

generated by RLHF against a control group. We allocate T/2 time steps for this stage. We divide

this stage into T/2H trials, each consisting of H time steps. In each trial t ∈ {1, ..., T/2H}, we

perform the following steps:

• Step 1: Initialize the allocation ratios α0(i) for each group i ∈ {1, ..., N + 1} using a uniform

or optimistic initialization.

• Step 2: For each participant m ∈ {1, ...,M}, repeat the following steps:

Step 2.1: Randomly assign one of the N +1 groups (N treatment groups or one control group)

to participant m according to the allocation ratios αt−1(i).

Step 2.2: Execute the assigned intervention πi or no intervention (in case of control group) for

H time steps and observe the cumulative discounted return Rt(m) and the binary outcome

Yt(m).
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Step 2.3: Update the empirical estimates Qt(i) andWt(i) for each intervention i ∈ {1, ..., N+1}

using the observed outcomes Yt(m) and Rt(m).

• Step 3: Update the allocation ratios αt(i) for each group i ∈ {1, ..., N + 1} using an adaptive

algorithm, such as Thompson sampling or Epsilon-greedy.

• Step 4: Perform a statistical test to compare the empirical estimates Qt(i) and Wt(i) across

different interventions and determine if there is a significant difference in their effectiveness.

The output of this stage is the best intervention π∗ that maximizes the expected outcome P ∗
T (π),

i.e., π∗ =π∈I P ∗
T (π). Alternatively, we can output a ranking or a distribution over the interventions

based on their effectiveness.

11.3 Remarks and Comparisons

The adaptive RCT modified framework has several interesting remarks and comparisons with the

main paper. We highlight some of them below:

Here, we can adjust the sample size or allocation ratio based on interim results, which may

improve the statistical efficiency or ethical fairness of the trial. However, the modified framework

also introduces additional complexity and uncertainty in the trial design and analysis, which may

affect the validity or reliability of the trial results.

The modified framework also requires different sample size and power calculations than the main

paper, since it needs to account for the adaptive nature of the trial, which may change the distribution

or variance of the estimates. The sample size and power calculations need to use appropriate methods

or formulas for adaptive RCTs, such as those given by [17] or [18].

Finally, the modified framework requires different statistical methods and tests than the main

paper, since it needs to account for the adaptive nature of the trial, which may violate the assump-

tions of standard methods and tests. The statistical methods and tests need to use appropriate

techniques or adjustments for adaptive RCTs, such as those given by [19] or [20].
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Theorem 3.** Suppose that the following conditions hold:

• The state space S and the action space A are finite.

• The transition function P and the reward function R are unknown but have low-rank structure,

i.e., there exist matrices U ∈ RS×d and V ∈ RA×d such that P (s′|s, a) = U(s′)⊤V (a)U(s) and

R(s, a) = U(s)⊤V (a)U(s) for some rank parameter d < S.

• The feedback type or reward model f used in RLHF is Lipschitz continuous with constant

L > 0, i.e., |f(s, a)− f(s′, a′)| ≤ L∥s− s′∥+ L∥a− a′∥ for any (s, a), (s′, a′) ∈ S ×A.

• The reward model Zt(s, a) learned by RLHF at time step t satisfies the following upper con-

fidence bound property with high probability: |Zt(s, a)− f(s, a)| ≤ Ut(s, a)− Zt(s, a) for any

(s, a) ∈ S ×A.

• The exploration-exploitation strategy used in RLHF satisfies the following optimism property

with high probability: maxa∈A Ut(s, a) ≥ f(s, π∗(s)) + ct for any s ∈ S, where ct > 0 is some

exploration bonus.

• The statistical test used in adaptive RCTs satisfies the following confidence property with high

probability: if there exists an intervention πi ∈ I such that Qt(i)−Qt(j) > 2δt for any j ̸= i,

then the test will declare πi as the best intervention, where δt > 0 is some confidence interval

that depends on the adaptive nature of the trial.
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Then, the regret of our modified framework at time step T is bounded by:

R(T ) ≤ ϵ+O

(√
d

T
+

√
N

T
+

√
M

T
+

√
H

T
+

√
σ

T

)

where ϵ > 0 is the approximation error, d < S is the rank parameter, N is the number of

candidate interventions, M is the number of feedback types or reward models, H is the horizon, and

σ > 0 is a parameter that measures the variability or uncertainty of the adaptive trial.

Proof

We prove Theorem 3 by following the same steps as in the proof of Theorem 1, but with some

modifications to account for the adaptive RCTs. We omit the details that are similar to the proof

of Theorem 1, and only highlight the differences.

We decompose the regret into two terms: the approximation error and the estimation error. The

approximation error is the same as in Theorem 1, i.e.,

Rapp(T ) = P ∗
T (π

∗)− P ∗
T (π

†)

where π† ∈ I is the best candidate intervention that satisfies P ∗
T (π

†) ≥ P ∗
T (π

∗)− ϵ. By assump-

tion, we have Rapp(T ) ≤ ϵ.

The estimation error is also similar to Theorem 1, i.e.,

Rest(T ) = P ∗
T (π

†)− P ∗
T (π)

where π ∈ I is the chosen intervention based on the adaptive RCT results. We bound this term

by using a concentration inequality and a union bound. For any intervention πi ∈ I, we have

|Pt(i)−Qt(i)| ≤ δt

with high probability, where δt > 0 is some confidence interval that depends on nt(i), the number

of times policy πi has been evaluated up to time step t. Therefore, we have

|P ∗
T (πi)−QT (i)| ≤ δT
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with high probability for any πi ∈ I. By applying a union bound over all interventions in I, we

have

max
πi∈I

|P ∗
T (πi)−QT (i)| ≤ δT

with high probability. This implies that

P ∗
T (π

†)− P ∗
T (π) ≤ QT (π

†)−QT (π) + 2δT

with high probability. By the confidence property of the statistical test, we have QT (π
†) −

QT (π) > 2δT with high probability, which implies that P ∗
T (π

†) − P ∗
T (π) ≤ 0 with high probability.

Therefore, we have Rest(T ) ≤ 0 with high probability.

Combining the two terms, we have

R(T ) = Rapp(T ) +Rest(T ) ≤ ϵ+O(δT )

with high probability. It remains to bound δT in terms of T , N , H, and σ. We use a standard

concentration inequality for binary outcomes with adaptive allocation, such as [21] or [22], to obtain

δT = O

(√
σ

nT (π†)
+

√
σ

nT (π)

)
with high probability, where σ > 0 is a parameter that measures the variability or uncertainty

of the adaptive trial. We note that nT (π
†) and nT (π) are both lower bounded by some positive

constant that depends on the adaptive algorithm and the initialization. Therefore, we have

δT = O

(√
σ

T

)
with high probability. Substituting this into the regret bound, we obtain

R(T ) ≤ ϵ+O

(√
σ

T

)
with high probability.
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To complete the proof, we need to account for the other terms in the regret bound that come

from the RLHF phase. We use a similar technique as [7] to bound the exploration and exploitation

costs in Stage 1. We omit the details here for brevity, but the main idea is to use concentration

inequalities and union bounds to bound the errors in the reward model and the value function, and

to use optimism and Lipschitz continuity to bound the suboptimality of the policy. We obtain

R(T ) ≤ ϵ+O

(√
d

T
+

√
N

T
+

√
M

T
+

√
H

T
+

√
σ

T

)

with high probability, where d < S is the rank parameter and M is the number of feedback types

or reward models. This completes the proof of Theorem 3.
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