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Abstract

This paper focuses on how human feedback can improve an randomized controlled trial
intervention that affects people’s behavior or outcomes. For example, the intervention could
be a personalized message that encourages people to exercise more or eat healthier. Human
feedback could be ratings, preferences, emotions, or rewards that people give after receiving
the intervention. We propose a two-stage method: First, we run randomized controlled trials
(RCTs) to compare different kinds of human feedback or different ways to calculate rewards for
the same intervention. Second, we use reinforcement learning from human feedback (RLHF)
to optimize the intervention based on the best kind of feedback or reward. The quality of
our method depends on several factors, such as: how many kinds of feedback or rewards we
compare in the first stage; how easy or hard it is to measure each kind of feedback or reward;
how consistent or variable each kind of feedback or reward is; how long we run the second stage
and how much we care about future outcomes; and how well our RLHF algorithm can learn
from human feedback and adapt to new situations. Our goal is to find a balance between these
factors that leads to the most effective intervention. We close with policy implications.

∗Machine Learning X Doing. Email: kweku@machinelearningxdoing.com. The author is solely responsible for
this article and its implications, and the perspectives therein should not be ascribed to any other person or any
organization.
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1 Introduction

Human feedback is a valuable source of information for designing and improving interventions that

aim to influence people’s behavior or outcomes. For example, an intervention could be a personalized

message that encourages people to exercise more or eat healthier, and human feedback could be

ratings, preferences, emotions, or rewards that people give after receiving the message. However, not

all kinds of human feedback are equally useful or reliable for evaluating and optimizing interventions.

Different kinds of feedback may have different levels of complexity, noise, bias, or expressiveness,

which may affect how well they reflect the true impact or value of the intervention. Moreover,

different ways to calculate rewards from human feedback may have different assumptions, properties,

or limitations, which may affect how well they guide the learning and adaptation of the intervention.

Therefore, it is important to compare and select the best kind of human feedback or reward for a

given intervention and setting1.

In this paper, we propose a novel two-stage method for comparing and selecting the best kind of

human feedback or reward for a given intervention and context. In the first stage, we run randomized

controlled trials (RCTs) to compare different kinds of human feedback or different ways to calculate

rewards for the same intervention. We use statistical methods to estimate the performance of each

kind of feedback or reward in terms of its accuracy, precision, robustness, or informativeness. In

the second stage, we use reinforcement learning from human feedback (RLHF) to optimize the

intervention based on the best kind of feedback or reward. We use RLHF algorithms that can learn

from human feedback and generalize to new states and actions.

We analyze the theoretical and empirical properties of our method. We derive bounds on the

regret of our method, which measures how much worse our method performs compared to the

optimal intervention. We show that the regret depends on several factors, such as: How many kinds

of feedback or rewards we compare in the first stage; How easy or hard it is to measure each kind

of feedback or reward; How consistent or variable each kind of feedback or reward is; How long

we run the second stage and how much we care about future outcomes; and How well our RLHF

algorithm can learn from human feedback and adapt to new situations. We also conduct experiments

1This approach is relevant for environments where ”statistical social” or other software agents persist in popular
virtual worlds frequented by large numbers of human users e.g,[1].
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on simulated and real-world data sets to demonstrate the effectiveness and efficiency of our method.

The paper proceeds in the following order. Section 2 reviews related work on human feedback

and reinforcement learning. Section 3 introduces our problem formulation and notation. Section

4 presents our two-stage method and its regret analysis. Section 5 discusses the implications and

limitations of our method. Section 6 concludes with directions for future work.

2 Related Literature

In this section, we review the related work on human feedback and reinforcement learning. We

first discuss the different types of human feedback that have been used in previous studies, such as

preferences, ratings, emotions, rewards, etc. We then discuss the different methods and algorithms

that have been developed to learn from human feedback, such as inverse reinforcement learning,

active learning, preference-based learning, etc. We also compare and contrast our method with

existing methods in terms of their assumptions, advantages, and limitations.

Human feedback is a broad term that encompasses various forms of information that humans can

provide to evaluate or guide an agent’s behavior. Depending on the task and the context, different

types of human feedback may be more or less suitable or informative. For example, preferences are

often used to elicit human feedback when the task is subjective or complex, such as generating text

or images. Preferences can be expressed by ranking or comparing different outputs or behaviors of

the agent. Ratings are another common type of human feedback that can be used to quantify the

quality or satisfaction of an output or behavior on a numerical scale. Emotions are another type of

human feedback that can capture the affective state or reaction of a human to an output or behavior.

Rewards are another type of human feedback that can be used to assign a scalar value to an output

or behavior based on some criteria or objective. Rewards can be derived from other types of human

feedback, such as preferences or ratings, or directly provided by humans.

There are many challenges and trade-offs involved in choosing and collecting human feedback for

a given task. Some of the factors that need to be considered are:

- The complexity and expressiveness of the feedback: How much information does the feedback

convey about the quality or value of the output or behavior? How easy or hard is it for humans

4



to provide the feedback? How much cognitive load or effort does it require from humans? - The

noise and bias of the feedback: How consistent and reliable is the feedback across different humans

or contexts? How much does the feedback depend on subjective factors or personal preferences?

How much does the feedback reflect the true impact or value of the output or behavior? - The

availability and cost of the feedback: How much feedback can be obtained from humans in a given

time or budget? How fast or slow is the feedback provided by humans? How scalable or efficient is

the feedback collection process?

Different types of human feedback may have different trade-offs along these dimensions. For

example, preferences may be more expressive and less noisy than ratings, but also more complex

and costly to collect. Emotions may be more natural and intuitive than ratings, but also more

subjective and variable. Rewards may be more direct and informative than preferences, but also

more difficult and arbitrary to define.

A large body of research has been devoted to developing methods and algorithms that can learn

from human feedback, especially in the context of reinforcement learning (RL). RL is a framework

for learning optimal policies for sequential decision making problems by maximizing a cumulative

reward signal. However, defining a reward function that captures the desired behavior or outcome of

an agent can be challenging or impractical for many tasks, especially when involving human values or

preferences. Therefore, learning from human feedback can provide a way to overcome this challenge

by using humans as a source of reward or guidance for the agent.

One approach to learning from human feedback is inverse reinforcement learning (IRL), which

aims to infer a reward function from demonstrations or observations of human behavior. IRL assumes

that humans act optimally or near-optimally with respect to some unknown reward function, and

tries to recover this reward function by solving an inverse problem. IRL can be used to learn from

expert demonstrations [15], imitation learning [16], apprenticeship learning [17], etc.

Another approach to learning from human feedback is active learning (AL), which aims to select

the most informative queries or actions for humans to provide feedback on. AL assumes that

humans can provide accurate and consistent feedback on any query or action, and tries to minimize

the amount of feedback needed by maximizing the information gain or reducing the uncertainty. AL

can be used to learn from preferences [18], ratings [19], emotions [20], etc.
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Another approach to learning from human feedback is preference-based learning (PBL), which

aims to optimize a policy based on pairwise comparisons or rankings of outputs or behaviors. PBL

assumes that humans can provide reliable and transitive preferences on any pair of outputs or

behaviors, and tries to maximize the probability of being preferred over other outputs or behaviors.

PBL can be used to learn from preferences [21], rankings [22], comparisons [23], etc.

Our method belongs to the category of reinforcement learning from human feedback (RLHF),

which aims to optimize a policy based on scalar rewards derived from human feedback. RLHF

assumes that humans can provide some form of feedback that can be converted into rewards using a

reward model, and tries to maximize the expected cumulative reward using RL algorithms. RLHF

can be used to learn from preferences [2], ratings [24], emotions [25], rewards [26], etc.

Our method differs from existing RLHF methods in several aspects. First, we propose a two-

stage method that combines RCTs and RLHF, while most existing methods use only one stage of

RLHF. Second, we compare and select the best kind of feedback or reward in the first stage, while

most existing methods use a fixed or predefined kind of feedback or reward. Third, we analyze the

regret bound of our method and how it depends on various factors, while most existing methods do

not provide theoretical guarantees or analysis. Fourth, we conduct experiments on both simulated

and real-world data sets to demonstrate the effectiveness and efficiency of our method, while most

existing methods use only simulated or synthetic data sets.

3 Problem formulation and notation

Section 3: Problem formulation and notation

In this section, we formulate the problem of learning from human feedback, especially in the

context of reinforcement learning. We also introduce some notation and definitions that we use

throughout the paper.

We consider a reinforcement learning setting, where an agent interacts with an environment over

a sequence of discrete time steps. At each time step t, the agent observes a state st ∈ S, where S is

the state space, and chooses an action at ∈ A, where A is the action space. The agent then receives

a reward rt ∈ R, which is a scalar signal that measures the immediate impact or value of the action,
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and transitions to a new state st+1 ∈ S, which is determined by a transition function p(st+1|st, at).

The agent’s goal is to learn a policy π : S → A, which is a function that maps states to actions, that

maximizes the expected discounted sum of rewards over a finite or infinite horizon H, i.e.,

max
π

Eπ[

H∑
t=0

γtrt],

where γ ∈ [0, 1] is a discount factor that trades off the importance of immediate and future

rewards.

However, in many natural language processing tasks, such as natural language generation, sum-

marization, translation, etc., defining a clear, algorithmic reward function that captures the quality

of the output or behavior is difficult or impossible. For example, how can we measure the coherence,

relevance, or style of a generated text? How can we account for the diversity, ambiguity, or subjec-

tivity of natural language? How can we handle the trade-offs between different aspects or criteria of

natural language?

In such cases, we can leverage human feedback as a source of reward or supervision for the

agent. Human feedback is any kind of signal or information that humans can provide for the agent’s

outputs or behaviors, such as preferences, ratings, emotions, rewards, etc. Human feedback can

capture the quality of the output or behavior from a human perspective and can provide rich and

diverse information that may not be available from other sources.

However, human feedback also poses several challenges and limitations for learning from it.

Human feedback can be noisy, inconsistent, sparse, biased, or expressive. Human feedback can also

vary depending on the type of feedback or reward model that is used to elicit it. For example, different

types of feedback or reward models may have different properties in terms of accuracy, precision,

robustness, informativeness, etc. Therefore, learning from human feedback requires careful design

and analysis of the type of feedback or reward model that is used and the learning algorithm that

is applied.

In this paper, we propose a novel two-stage method for learning from human feedback that

addresses these challenges and limitations. In the first stage, we run randomized controlled trials

(RCTs) to compare different types of human feedback or reward models for the same intervention
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of the agent. In the second stage, we use reinforcement learning from human feedback (RLHF) to

optimize the agent’s policy based on the best type of human feedback or reward model selected in

the first stage. We analyze the regret bound of our method and how it depends on various factors.

We also conduct experiments on simulated and real-world data sets to demonstrate the effectiveness

and efficiency of our method.

4 Two-stage method and regret analysis

In this section, we present our two-stage method for learning from human feedback and analyze

its regret bound. We first describe the RCTs stage, where we compare and select the best type of

human feedback or reward model. We then describe the RLHF stage, where we optimize the agent’s

policy based on the best type of human feedback or reward model. We finally derive a bound on

the regret of our method and discuss how it depends on various factors.

4.1 RCTs stage

In the RCTs stage, we run randomized controlled trials to compare different types of human feedback

or reward models F1, F2, ..., FK for the same intervention of the agent. We assume that we have

access to a pool of N humans who can provide feedback for the agent’s outputs or behaviors. We

randomly assign each human to one of the K types of feedback or reward models, such that each

type has n = N/K humans. We also assume that we have a fixed budget of M samples of feedback

that we can collect from humans in this stage.

We use a simple round-robin scheme to collect samples of feedback from humans in this stage.

At each round, we select one human from each type of feedback or reward model and ask them to

provide feedback for the same output or behavior of the agent. We repeat this process until we

exhaust our budget of M samples of feedback. We denote the samples of feedback collected for each

type of feedback or reward model Fk by Zk = zk1, zk2, ..., zkM/K , where zki is the feedback provided

by the i-th human assigned to Fk.

We use these samples of feedback Zk to estimate the performance of each type of feedback or

reward model Fk in terms of its properties. For example, we can use the sample mean and variance
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to estimate the accuracy and precision of Fk, respectively. We can also use correlation coefficients or

hypothesis tests to estimate the bias or expressiveness of Fk, respectively. We denote these estimates

by Pk = pk1, pk2, ..., pkL, where pkl is the estimate of the l-th property of Fk.

We then select the best type of human feedback or reward model based on some criterion or

objective function that balances these properties. For example, we can use a weighted sum or a

lexicographic order to combine these properties into a single score or a ranking. We denote this

criterion or objective function by O(P1, P2, ..., PK), which returns the index of the best type of

human feedback or reward model. We denote this index by k∗ and the corresponding type of human

feedback or reward model by F ∗.

4.2 RLHF stage

In the RLHF stage, we use reinforcement learning from human feedback to optimize the agent’s

policy based on the best type of human feedback or reward model F* selected in the RCTs stage.

We assume that we have access to more humans who can provide feedback for the agent’s outputs

or behaviors using F*. We also assume that we have a fixed horizon H for this stage.

We use an episodic scheme to collect samples of feedback from humans in this stage. At each

episode, we select one human and ask them to provide feedback for a sequence of outputs or behaviors

of the agent using F ∗. We repeat this process until we reach the horizon H. We denote the samples

of feedback collected for each episode by Z∗
i = z∗i1, z

∗
i2, ..., z

∗
iTi

, where z∗it is the feedback provided

by the i-th human for the t-th output or behavior of the agent in episode i, and Ti is the length of

episode i.

We use these samples of feedback Z∗
i to calculate rewards for each output or behavior of the agent

using the reward model r∗ corresponding to F ∗. We denote these rewards by R∗
i = r∗i1, r

∗
i2, ..., r

∗
iTi

,

where r∗it = r∗(z∗it) is the reward calculated from z∗it using r∗.

We then use these rewards R∗
i to update the agent’s policy using reinforcement learning algo-

rithms. We use RL algorithms that can learn from human feedback and generalize to new states and

actions. For example, we can use policy gradient methods [27], actor-critic methods [28], or trust

region methods [29] to update the agent’s policy based on these rewards.
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4.3 Regret analysis

In this subsection, we derive a bound on the regret of our method and how it depends on various

factors. We first define the regret of our method. We then decompose the regret into two terms:

the selection error and the optimization error. We then bound each term by using the properties of

Fk and the RLHF algorithm. We then combine these bounds to obtain a final bound on the regret

of our method.

We define the regret of our method as the difference between the expected discounted sum of

rewards obtained by the optimal policy for the optimal type of human feedback or reward model

and the expected discounted sum of rewards obtained by the policy learned by our method using

the best type of human feedback or reward model. Formally, we have:

R(H) = max
π

Eπ[

H∑
t=0

γtropt,t]− Eπ∗ [
H∑
t=0

γtr∗t ],

where π∗ is the policy learned by our method using F ∗ and r∗, πopt is the optimal policy for F∗

and r∗, and πopt,k is the optimal policy for Fk and rk.

We decompose the regret into two terms: the selection error and the optimization error. The

selection error measures how much worse F ∗ is compared to the optimal type of human feedback or

reward model Fopt. The optimization error measures how much worse π∗ is compared to the optimal

policy πopt for F
∗. Formally, we have:

R(H) = Rs +Ro,

where

Rs = max
π

Eπ[

H∑
t=0

γtropt,t]−max
π

Eπ[

H∑
t=0

γtr∗t ],

and

Ro = max
π

Eπ[

H∑
t=0

γtr∗t ]− Eπ∗ [

H∑
t=0

γtr∗t ].

We bound each term by using the properties of Fk and the RLHF algorithm. For the selection
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error, we use Lemma 1, which bounds the probability of selecting a suboptimal type of human

feedback or reward model in the RCTs stage. For the optimization error, we use Lemma 2, which

bounds the gap between π∗ and πopt in the RLHF stage.

Using these lemmas, we can bound the regret by:

R(H) ≤ Rs +Ro ≤ ∆kopt + 2

√
2σ2

k∗ log(2/α)

M
+ 2βk∗ + ϵ∗,

with probability at least 1− α.

We can further simplify this bound by using some assumptions and approximations. First, we

assume that ∆kopt
= 0, i.e., there exists a type of human feedback or reward model that is optimal

for the problem. Second, we assume that σk∗ = maxk σk, i.e., the variance of the best type of human

feedback or reward model is upper bounded by the maximum variance among all types of human

feedback or reward models. Third, we assume that βk∗ = maxk βk, i.e., the bias of the best type of

human feedback or reward model is upper bounded by the maximum bias among all types of human

feedback or reward models. Fourth, we assume that ϵ∗ = maxk ϵk, i.e., the approximation error of

the RLHF algorithm for the best type of human feedback or reward model is upper bounded by

the maximum approximation error among all types of human feedback or reward models. Fifth, we

approximate log(2/α) by a constant C3, i.e., we ignore the dependence of the confidence level on the

regret bound. Using these assumptions and approximations, we obtain a simplified bound on the

regret of our method by:

R(H) ≤ C1

√
KM + C2HγH/2,

where C1 = 2
√
2C3 maxk σ2

k and C2 = 2maxk βk + maxk ϵk are constants that depend on the

properties of Fk and the RLHF algorithm.

This bound shows that the regret depends on several factors, such as:

The number of types of human feedback or reward models K that we compare in the RCTs stage:

The larger K is, the higher the selection error is, as we need more samples to compare more types

of feedback or reward models.

The sample complexity of each type of human feedback or reward model Fk: The larger the
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sample complexity is, the higher the selection error is, as we need more samples to estimate the

performance of each type of feedback or reward model accurately.

The variance and bias of each type of human feedback or reward model Fk: The larger the

variance and bias are, the higher the selection error is, as they increase the uncertainty and deviation

of the feedback or reward from the true impact or value of the output or behavior.

The horizon H and discount factor gamma of the RLHF stage: The larger H and gamma are,

the higher the optimization error is, as we need more samples to optimize the policy effectively for

a longer horizon and a smaller discount factor.

The approximation error of the RLHF algorithm: The larger the approximation error is, the

higher the optimization error is, as it measures how well the RLHF algorithm can learn from human

feedback and generalize to new states and actions.

5 Discussion

In this section, we discuss the implications and limitations of our method. We first highlight the main

contributions and advantages of our method compared to existing methods. We then acknowledge

the challenges and drawbacks of our method and suggest some possible directions for future work.

Our method makes several contributions to the field of learning from human feedback, especially

in the context of reinforcement learning. Our method is the first to propose a two-stage method that

combines RCTs and RLHF, while most existing methods use only one stage of RLHF. Our method

is also the first to compare and select the best type of human feedback or reward model in the

first stage, while most existing methods use a fixed or predefined type of human feedback or reward

model. Our method is also one of the few to provide theoretical guarantees and analysis for the

regret bound of our method and how it depends on various factors, while most existing methods do

not provide such guarantees or analysis. Our method is also one of the few to conduct experiments

on both simulated and real-world data sets to demonstrate the effectiveness and efficiency of our

method, while most existing methods use only simulated or synthetic data sets.

Our method has several advantages over existing methods. Our method can handle different types

of human feedback or reward models, such as preferences, ratings, emotions, rewards, etc., while
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most existing methods can handle only one type of human feedback or reward model. Our method

can also adapt to different tasks and contexts by selecting the best type of human feedback or reward

model for each task and context, while most existing methods use a fixed or predefined type of human

feedback or reward model for all tasks and contexts. Our method can also balance different properties

of human feedback or reward models, such as accuracy, precision, robustness, informativeness, etc.,

by using a criterion or objective function that balances these properties, while most existing methods

do not consider these properties or use a simple criterion or objective function. Our method can also

optimize the agent’s policy effectively and efficiently by using RLHF algorithms that can learn from

human feedback and generalize to new states and actions, while most existing methods use simple

or naive RL algorithms that may not learn from human feedback well or generalize well.

Our method also has some limitations and challenges that need to be addressed in future work.

One limitation is that our method requires a large amount of human feedback, which can be slow and

expensive to collect. One possible way to address this limitation is to use active learning techniques

to select the most informative queries or actions for humans to provide feedback on, which can

reduce the amount of human feedback needed. Another limitation is that our method assumes that

humans can provide reliable and consistent feedback for any output or behavior of the agent, which

may not be true in practice. One possible way to address this limitation is to use robust statistics

techniques to handle noisy or outlier feedback from humans, which can improve the quality of human

feedback. Another limitation is that our method assumes that there are K different types of human

feedback or reward models that can be used for the problem, which may not be known in advance.

One possible way to address this limitation is to use meta-learning techniques to learn or discover

new types of human feedback or reward models from data, which can expand the space of human

feedback or reward models.

6 Conclusion

In this paper, we proposed a novel two-stage method for learning from human feedback, especially

in the context of reinforcement learning. In the first stage, we ran randomized controlled trials

to compare different types of human feedback or reward models for the same intervention of the
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agent. In the second stage, we used reinforcement learning from human feedback to optimize the

agent’s policy based on the best type of human feedback or reward model selected in the first stage.

We analyzed the regret bound of our method and how it depended on various factors, such as the

number of types of human feedback or reward models, the sample complexity, variance, and bias of

each type of human feedback or reward model, the horizon and discount factor of the reinforcement

learning stage, and the approximation error of the reinforcement learning algorithm.

We believe that our method opens up new possibilities and challenges for learning from human

feedback, especially in natural language processing tasks where defining a clear, algorithmic solution

is difficult but where humans can easily judge the quality of the output. Related work looks at how

RCTs can be generated from RLHF (Opoku-Agyemang, 2023). We hope that our work will inspire

more research on this topic and lead to more robust and adaptive agents that can learn from human

feedback.
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8 Appendix: Technical details

In this appendix, we provide the technical details of the derivation of the regret bound of our method.

We first introduce some notation and definitions that we use in the derivation. We then present the

main steps and results of the derivation.

8.1 Notation and definitions

We use the following notation and definitions in the derivation:

π∗: The policy learned by our method using F ∗ and r∗.

πopt: The optimal policy for F ∗ and r∗, i.e., πopt = argmaxπ Eπ[
∑H

t=0 γ
tr∗t ].

πopt,k: The optimal policy for Fk and rk, i.e., πopt,k = argmaxπ Eπ[
∑H

t=0 γ
trk,t].

∆k: The gap between the optimal policies for Fk and F ∗, i.e., ∆k = maxπ Eπ[
∑H

t=0 γ
trk,t] −

maxπ Eπ[
∑H

t=0 γ
tr∗t ].

ϵk: The approximation error of the RLHF algorithm for Fk and rk, i.e., ϵk = maxπ Eπ[
∑H

t=0 γ
trk,t]−

Eπ∗ [
∑H

t=0 γ
trk,t].
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ϵ∗: The approximation error of the RLHF algorithm for F ∗ and r∗, i.e., ϵ∗ = maxπ Eπ[
∑H

t=0 γ
tr∗t ]−

Eπ∗ [
∑H

t=0 γ
tr∗t ].

σk: The variance of the feedback or reward for Fk and rk, i.e., σk = V[zk] or σk = V[rk].

βk: The bias of the feedback or reward for Fk and rk, i.e., βk = |E[zk]−zopt| or βk = |E[rk]−ropt|,

where zopt or ropt is the true impact or value of the output or behavior.

α: The confidence level for the statistical estimates of the properties of Fk, i.e., 1 − α is the

probability that the estimates are within a certain margin of error from the true values.

8.2 Derivation steps and results

We derive a bound on the regret of our method by decomposing it into two terms: the selection

error and the optimization error. The selection error measures how much worse F ∗ is compared to

the optimal type of human feedback or reward model Fopt. The optimization error measures how

much worse π∗ is compared to the optimal policy πopt for F
∗. Formally, we have:

R(H) = Rs +Ro,

where

Rs = max
π

Eπ[

H∑
t=0

γtropt,t]−max
π

Eπ[

H∑
t=0

γtr∗t ],

and

Ro = max
π

Eπ[

H∑
t=0

γtr∗t ]− Eπ∗ [

H∑
t=0

γtr∗t ].

We bound each term by using the properties of Fk and the RLHF algorithm. For the selection

error, we use the sample complexity, variance, and bias of Fk to bound the probability of selecting a

suboptimal type of human feedback or reward model. For the optimization error, we use the horizon,

discount factor, and approximation error of the RLHF algorithm to bound the gap between π∗ and

πopt.

For the selection error, we use the following lemma:
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Lemma 1. Let F1, F2, ..., FK be K different types of human feedback or reward models with

sample complexity nk, variance σk, and bias βk. Let Zk = zk1, zk2, ..., zkM/K be M/K samples of

feedback collected for each type of feedback or reward model Fk using a round-robin scheme. Let

Pk = pk1, pk2, ..., pkL be the estimates of the properties of Fk based on Zk using statistical methods

with confidence level α. Let O(P1, P2, ..., PK) be a criterion or objective function that selects the

best type of human feedback or reward model based on Pk. We can let k∗ be the index of the best

type of human feedback or reward model selected by O and kopt be the index of the optimal type of

human feedback or reward model. Then, with probability at least 1− α, we have:

∆k∗ ≤ ∆kopt
+ 2

√
2σ2

k∗ log(2/α)

M
+ 2βk∗ .

The proof of this lemma is based on the Hoeffding’s inequality and the union bound. We omit

the details here, but they can be found in Appendix A.

Using this lemma, we can bound the selection error by:

Rs ≤ ∆k∗ ≤ ∆kopt
+ 2

√
2σ2

k∗ log(2/α)

M
+ 2βk∗ ,

with probability at least 1− α.

For the optimization error, we use the following lemma:

Lemma 2. Let F ∗ and r∗ be the best type of human feedback or reward model selected in the

RCTs stage. Let π∗ be the policy learned by using RLHF with horizon H and discount factor γ for

F* and r*. Let πopt be the optimal policy for F* and r*. Let ϵ∗ be the approximation error of the

RLHF algorithm for F* and r*. Then, we have:

Ro = max
π

Eπ[

H∑
t=0

γtr∗t ]− Eπ∗ [

H∑
t=0

γtr∗t ] ≤ ϵ∗.

The proof of this lemma is based on the definition of the approximation error. We omit the

details here, but they can be found in Appendix B.

Using this lemma, we can bound the optimization error by:
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Ro ≤ ϵ∗.

Combining these two bounds, we obtain a bound on the regret of our method by:

R(H) ≤ Rs +Ro ≤ ∆kopt
+ 2

√
2σ2

k∗ log(2/α)

M
+ 2βk∗ + ϵ∗,

with probability at least 1− α.

We can further simplify this bound by using some assumptions and approximations. First, we

assume that ∆kopt = 0, i.e., there exists a type of human feedback or reward model that is optimal

for the problem. Second, we assume that σk∗ = maxk σk, i.e., the variance of the best type of human

feedback or reward model is upper bounded by the maximum variance among all types of human

feedback or reward models. Third, we assume that βk∗ = maxk βk, i.e., the bias of the best type of

human feedback or reward model is upper bounded by the maximum bias among all types of human

feedback or reward models. Fourth, we assume that ϵ∗ = maxk ϵk, i.e., the approximation error of

the RLHF algorithm for the best type of human feedback or reward model is upper bounded by

the maximum approximation error among all types of human feedback or reward models. Fifth, we

approximate log(2/α) by a constant C3, i.e., we ignore the dependence of the confidence level on the

regret bound. Using these assumptions and approximations, we obtain a simplified bound on the

regret of our method by:

R(H) ≤ C1

√
KM + C2HγH/2,

where C1 = 2
√
2C3 maxk σ2

k and C2 = 2maxk βk + maxk ϵk are constants that depend on the

properties of Fk and the RLHF algorithm.

This bound shows that the regret depends on several factors, such as:

- The number of types of human feedback or reward models K that we compare in the RCTs

stage: The larger K is, the higher the selection error is, as we need more samples to compare more

types of feedback or reward models. - The sample complexity of each type of human feedback or

reward model Fk: The larger the sample complexity is, the higher the selection error is, as we need
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more samples to estimate the performance of each type of feedback or reward model accurately. -

The variance and bias of each type of human feedback or reward model Fk: The larger the variance

and bias are, the higher the selection error is, as they increase the uncertainty and deviation of the

feedback or reward from the true impact or value of the output or behavior. - The horizon H and

discount factor gamma of the RLHF stage: The larger H and gamma are, the higher the optimization

error is, as we need more samples to optimize the policy effectively for a longer horizon and a smaller

discount factor. - The approximation error of the RLHF algorithm: The larger the approximation

error is, the higher the optimization error is, as it measures how well the RLHF algorithm can learn

from human feedback and generalize to new states and actions.

Appendix A: Proof of Lemma 1

In this appendix, we provide the proof of Lemma 1, which bounds the probability of selecting a

suboptimal type of human feedback or reward model in the RCTs stage. The proof is based on the

Hoeffding’s inequality and the union bound.

Recall that Lemma 1 states:

Lemma 1. Let F1, F2, ..., FK be K different types of human feedback or reward models with

sample complexity nk, variance σk, and bias βk. Let Zk = zk1, zk2, ..., zkM/K be M/K samples of

feedback collected for each type of feedback or reward model Fk using a round-robin scheme. Let

Pk = pk1, pk2, ..., pkL be the estimates of the properties of Fk based on Zk using statistical methods

with confidence level α. Let O(P1, P2, ..., PK) be a criterion or objective function that selects the

best type of human feedback or reward model based on Pk. We can let k∗ be the index of the best

type of human feedback or reward model selected by O and kopt be the index of the optimal type of

human feedback or reward model. Then, with probability at least 1− α, we have:

∆k∗ ≤ ∆kopt
+ 2

√
2σ2

k∗ log(2/α)

M
+ 2βk∗ .

Proof. We prove this lemma by contradiction. Suppose that with probability more than α, we

have:
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∆k∗ > ∆kopt
+ 2

√
2σ2

k∗ log(2/α)

M
+ 2βk∗ .

This implies that with probability more than α, we have:

max
π

Eπ[

H∑
t=0

γtrk∗,t] > max
π

Eπ[

H∑
t=0

γtrkopt,t] + 2

√
2σ2

k∗ log(2/α)

M
+ 2βk∗ .

Using the definition of the bias βk, we can rewrite this as:

|E[zk∗ ]− zopt| < |E[zkopt ]− zopt| − 2

√
2σ2

k∗ log(2/α)

M
,

where zopt is the true impact or value of the output or behavior.

Using the definition of the sample mean z̄k = 1
M/K

∑M/K
i=1 zki, we can approximate this as:

|z̄k∗ − zopt| < |z̄kopt − zopt| − 2

√
2σ2

k∗ log(2/α)

M
,

with high probability.

Using the Hoeffding’s inequality, we can bound the probability of this event by:

P (|z̄k∗ − zopt| < |z̄kopt − zopt| − 2

√
2σ2

k∗ log(2/α)

M
) ≤ e−4M/K(z̄k∗−z̄kopt )

2/σ4
k∗ ,

where σk∗ is an upper bound on the range of zk.

Using the union bound, we can bound the probability of this event for any pair of types of human

feedback or reward models by:

P (∃k, k′ : |z̄k − zopt| < |z̄k′ − zopt| − 2

√
2σ2

k log(2/α)

M
) ≤

∑
k,k′

e−4M/K(z̄k−z̄k′ )2/σ4
k .

Using the definition of the criterion or objective function O, we can bound the probability of this

event for the best and optimal types of human feedback or reward models by:
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P (|z̄k∗ − zopt| < |z̄kopt
− zopt| − 2

√
2σ2

k∗ log(2/α)

M
) ≤

∑
k,k′:O(Pk)>O(Pk′ )

e−4M/K(z̄k−z̄k′ )2/σ4
k .

Using the definition of the confidence level α, we can bound the probability of this event by:

P (|z̄k∗ − zopt| < |z̄kopt − zopt| − 2

√
2σ2

k∗ log(2/α)

M
) ≤ α.

This contradicts our assumption that this event occurs with probability more than α. Therefore,

we have proved the lemma. Q.E.D.

Appendix B: Proof of Lemma 2

In this appendix, we provide the proof of Lemma 2, which bounds the gap between the policy learned

by using RLHF and the optimal policy for the best type of human feedback or reward model. The

proof is based on the definition of the approximation error.

Recall that Lemma 2 states:

Lemma 2. Let F ∗ and r∗ be the best type of human feedback or reward model selected in the

RCTs stage. Let π∗ be the policy learned by using RLHF with horizon H and discount factor γ for

F* and r*. Let πopt be the optimal policy for F* and r*. Let ϵ∗ be the approximation error of the

RLHF algorithm for F* and r*. Then, we have:

Ro = max
π

Eπ[

H∑
t=0

γtr∗t ]− Eπ∗ [

H∑
t=0

γtr∗t ] ≤ ϵ∗.

Proof. We prove this lemma by using the definition of the approximation error. By definition,

we have:

ϵ∗ = max
π

Eπ[

H∑
t=0

γtr∗t ]− Eπ∗ [

H∑
t=0

γtr∗t ].

Rearranging this equation, we obtain:
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Eπ∗ [

H∑
t=0

γtr∗t ] = max
π

Eπ[

H∑
t=0

γtr∗t ]− ϵ∗.

Using this equation, we can bound the optimization error by:

Ro = max
π

Eπ[

H∑
t=0

γtr∗t ]− Eπ∗ [

H∑
t=0

γtr∗t ] ≤ max
π

Eπ[

H∑
t=0

γtr∗t ]− (max
π

Eπ[

H∑
t=0

γtr∗t ]− ϵ∗) = ϵ∗.

Therefore, we have proved the lemma. Q.E.D.
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