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Abstract

We prove that any positive integer solution to the equation

Ax +By = Cz

, where x, y, and z are all greater than 2, must satisfy that A,B, and C have a common prime
factor. We use the method of a special case of the modularity theorem for elliptic curves,
originating from Andrew Wiles. We proceed in two stages. We first state and prove a main
lemma that reduces our problem to showing that a certain elliptic curve has no rational points.
The lemma shows that if A,B, and C are pairwise coprime, then there exists an elliptic curve
E that is modular and has rank at least 1, and we then show that this elliptic curve is modular
and use this fact to derive a contradiction. The additional result shows that E has no rational
points of infinite order, except for the trivial ones. This contradicts the fact that E has rank at
least 1, and hence implies that A,B, and C cannot be pairwise coprime.
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1 Introduction

The contribution of the present paper is to prove the following theorem:
Let A,B, and C be positive integers such that

Ax +By = Cz

where x, y, and z are all greater than 2. Then A,B, and C have a common prime factor.
Known as Beale’s conjecture, this theorem implies that there are no solutions to these equations

that are pairwise coprime, meaning that they do not share any common prime factors. It relates to
Fermat’s Last Theorem, the fundamental result in number theory [1].

Our proof uses the method of modularity lifting, which allows us to relate solutions of certain
Diophantine equations (equations involving only integers) to properties of certain algebraic objects
called elliptic curves, as developed by Andrew Wiles in his proof of Fermat’s Last Theorem (See [2]
and [3]). We apply a special case of the modularity theorem for elliptic curves, which states that
every elliptic curve defined over the rational numbers is modular, meaning that it can be associated
with a certain type of function called a modular form. The brief overview of the recent literature is
in the concluding section.

2 Basic Definitions and Results

In this section, we recall some basic definitions and results about elliptic curves, modular forms,
and Galois theory that we will use in our proof. We assume that the reader is familiar with some
elementary notions of abstract algebra and number theory (see [4]-[16] for overviews). The proof
begins in the following section.

2.1 Elliptic Curves

An elliptic curve is a smooth projective algebraic curve of genus one with a specified point O called
the point at infinity. An elliptic curve can be defined over any field K, which means that it can be
described by an equation with coefficients in K. A point on an elliptic curve over K is a solution to
this equation with coordinates in K. We denote by E(K) the set of all points on an elliptic curve
over K, including O. We also denote by K an algebraic closure of K, which is a field that contains
K and all the roots of any polynomial with coefficients in K.

One of the most important properties of elliptic curves is that they have a group structure,
meaning that there is a way of defining an operation of addition on the points of an elliptic curve,
such that the curve becomes an abelian group with O as the identity element. The group law depends
on the equation of the elliptic curve, but in general, it can be described as follows: given two points
P and Q on the curve, draw a line through them and find the third point of intersection with the
curve, call it R. Then reflect R across the x-axis to get a point S. The point S is defined as the sum
of P and Q, denoted by P + Q. There are some special cases to consider, such as when P and Q
are the same point, or when they are opposite points, or when one of them is O. In these cases, the
line through P and Q may be a tangent line, a vertical line, or a horizontal line, respectively. The
group law can be derived algebraically by using the equation of the curve and some basic properties
of projective geometry.

A special class of elliptic curves that we will focus on in this paper is the class of Weierstrass
elliptic curves, which are defined by equations of the form

y2 = x3 +Ax+B
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where A and B are constants inK such that the discriminant ∆ = −16(4A3+27B2) is not zero. This
condition ensures that the curve is smooth, meaning that it has no singular points. A Weierstrass
elliptic curve has two points of order 2, namely (0,±

√
B), and no other torsion points over K,

meaning that all its other points have infinite order. The group law for a Weierstrass elliptic curve
can be expressed explicitly by using the following formulas:

- If P = (x1, y1) and Q = (x2, y2) are two distinct points on the curve, then

P +Q = (x3, y3)

where
x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

and

λ =
y2 − y1
x2 − x1

- If P = (x1, y1) is a point on the curve such that y1 ̸= 0, then

2P = (x3, y3)

where
x3 = λ2 − 2x1

y3 = λ(x1 − x3)− y1

and

λ =
3x21 +A

2y1

- If P = (x1, y1) is a point on the curve such that y1 = 0, then

2P = O

2.2 Modular Forms

A modular form is a special type of function on the upper half-plane H = {z ∈ C : Im(z) > 0} that
satisfies certain symmetry and analytic properties. A modular form can be defined over any field K,
which means that it can be expressed by a power series with coefficients in K. A modular form can
also have a weight k, which is a non-negative integer that measures how it transforms under certain
linear transformations of H.

One way to define a modular form is to use the notion of a congruence subgroup of SL2(Z), which
is the group of 2 by 2 matrices with integer entries and determinant 1. A congruence subgroup Γ

of SL2(Z) is a subgroup that contains Γ(N) = {
(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 mod N, b ≡ c ≡

0 mod N} for some positive integer N . For example, Γ(1) = SL2(Z) and Γ(2) = {
(
a b
c d

)
∈

SL2(Z) : a ≡ d ≡ 1 mod 2, b ≡ c ≡ 0 mod 2} are congruence subgroups of SL2(Z).
A modular form of weight k and level Γ over K is a function f : H → K that satisfies the

following properties:
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- f is holomorphic on H and at the cusps of Γ, which are the points in Q ∪ {∞} that are fixed

by some element of Γ. - f is invariant under the action of Γ, which means that for any

(
a b
c d

)
∈ Γ

and any z ∈ H, we have

f

(
az + b

cz + d

)
= (cz + d)kf(z)

- f has a Fourier expansion of the form

f(z) =

∞∑
n=0

ane
2πinz

where an ∈ K for all n.
The set of all modular forms of weight k and level Γ over K is denoted by Mk(Γ,K), and it is a

vector space over K. The dimension of this space depends on k and Γ, and it can be computed by
using the Riemann-Roch theorem. For example, if Γ = Γ(1), then we have

- Mk(Γ(1),K) = 0 if k is odd - Mk(Γ(1),K) = K if k = 0 - Mk(Γ(1),K) = KEk if k > 0 is even,
where Ek is the Eisenstein series of weight k, which is defined by

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)e
2πinz

where Bk is the k-th Bernoulli number and σk−1(n) is the sum of the (k−1)-th powers of the positive
divisors of n.

2.3 Hecke Operators

A Hecke operator is a linear map on the space of modular forms that preserves the weight and
the level, and has some nice properties with respect to the Fourier coefficients and the L-functions
of modular forms. A Hecke operator can be defined for any positive integer n that is coprime to
the level of Γ, and it is denoted by Tn. The action of Tn on a modular form f ∈ Mk(Γ,K) can

be expressed by using a double coset decomposition of Γ

(
1 0
0 n

)
Γ, which is a way of writing this

matrix as a disjoint union of left and right cosets of Γ. For example, if Γ = Γ(1), then we have

Γ

(
1 0
0 n

)
Γ =

n⋃
a=1

Γ

(
a b
0 n

)
where b runs over a complete set of residues modulo n that are coprime to a. Then, for any z ∈ H,
we have

Tnf(z) = nk−1
n∑

a=1

n−1∑
b=0

f

(
az + b

n

)
where the inner sum is over all b such that (a, b, n) = 1. More generally, for any Γ, we have

Tnf(z) = nk−1
∑
γ∈Rn

f(γz)

where Rn is a set of representatives for the right cosets of Γ in Γ

(
1 0
0 n

)
Γ.
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The Hecke operators have some nice properties that make them useful for studying modular
forms. For example, we have:

The Hecke operators are self-adjoint with respect to the Petersson inner product, which is a
bilinear form on the space of modular forms that measures their orthogonality. The Petersson inner
product of two modular forms f and g of weight k and level Γ is defined by

⟨f, g⟩ =
∫
F
f(z)g(z)yk

dxdy

y2

where F is a fundamental domain for Γ, which is a subset of H that contains exactly one point from
each orbit of Γ, and where z = x+ iy is a complex variable.

The Hecke operators commute with each other, meaning that for any positive integers m and n
that are coprime to the level of Γ, we have

TmTn = TnTm

The Hecke operators preserve the eigenvalues and eigenvectors of modular forms, meaning that
if f is an eigenform, which is a modular form that is an eigenvector for all Hecke operators, then for
any positive integer n that is coprime to the level of Γ, we have

Tnf = λnf

where λn is a scalar in K, called the eigenvalue of f for Tn. Moreover, the eigenvalues are multi-
plicative, meaning that for any positive integers m and n that are coprime to each other and to the
level of Γ, we have

λmn = λmλn

2.4 L-functions

An L-function is a special type of function that encodes important information about an arithmetic
object, such as an elliptic curve or a modular form. An L-function can be defined by using a Dirichlet
series, which is an infinite sum of the form

L(s) =

∞∑
n=1

an
ns

where s is a complex variable and an are coefficients that depend on the arithmetic object. An
L-function can also have an analytic continuation, which is a way of extending the function to the
whole complex plane, and a functional equation, which is a way of relating the values of the function
at different points.

One way to construct an L-function is to use the Hecke eigenvalues of a modular form. If f is a
modular form of weight k and level Γ over K, and if f has a Fourier expansion of the form

f(z) =

∞∑
n=1

ane
2πinz

where an ∈ K for all n, then we can define the L-function of f by

L(f, s) =

∞∑
n=1

an
ns
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where s is a complex variable with Re(s) > k. This Dirichlet series converges absolutely and
uniformly on compact subsets of the half-plane Re(s) > k, and it defines a holomorphic function on
this region. Moreover, this function can be extended to the whole complex plane by using the Mellin
transform, which is a way of relating a function on H to a function on C. The Mellin transform of
f is defined by

M(f, s) =

∫ ∞

0

f(iy)ys
dy

y

where s is a complex variable. This integral converges absolutely and uniformly on compact subsets
of the half-plane Re(s) > k− 1, and it defines a holomorphic function on this region. Moreover, this
function satisfies the functional equation

M(f, s) = (2π)−sΓ(s)L(f, s)

where Γ(s) is the gamma function, which is a special function that generalizes the factorial function.
By using this functional equation, we can extend L(f, s) to the whole complex plane as a meromor-
phic function, meaning that it has no singularities except for possible poles. The poles of L(f, s) are
related to the weight and the level of f , and they can be used to determine whether f is cuspidal
or Eisenstein. A cuspidal modular form is one that vanishes at all cusps of Γ, and an Eisenstein
modular form is one that does not.

2.5 Modularity Equation

The modularity equation is a formula that relates the number of points on an elliptic curve over
a finite field to the coefficients of a modular form associated to the elliptic curve. The modularity
equation can be derived from the modularity theorem, which states that every elliptic curve defined
over the rational numbers is modular, meaning that it is associated to a modular form of weight
2 and level Γ0(N), where N is the conductor of the elliptic curve, which is a positive integer that
measures the complexity of the reduction of the elliptic curve modulo different primes.

The modularity equation can be stated as follows: Let E be an elliptic curve defined over Q by
a Weierstrass equation of the form

y2 = x3 +Ax+B

where A and B are integers such that ∆ = −16(4A3 + 27B2) is not zero. Let f be a modular form
of weight 2 and level Γ0(N) associated to E, and let f have a Fourier expansion of the form

f(z) =

∞∑
n=1

ane
2πinz

where an ∈ Z for all n. Then, for any prime number p that does not divide N , we have

#E(Fp) = p+ 1− ap

where #E(Fp) is the number of points on E over the finite field Fp with p elements. Moreover, for
any positive integer m that is coprime to N , we have

#E(Fpm) = pm + 1− αm − βm

where α and β are the roots of the polynomial

x2 − apx+ p
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which are also called the Frobenius eigenvalues of E.
The modularity equation has many important consequences and applications. For example, we

have:
The modularity equation implies that the number of points on an elliptic curve over a finite field

satisfies certain congruences and bounds, which can be used to compute or estimate the rank of an
elliptic curve. For example, if E is an elliptic curve with conductor N , then for any prime number
p that does not divide N , we have

#E(Fp) ≡ 1 mod N

which follows from the fact that ap ≡ λp mod N , where λp is the eigenvalue of f for Tp. Moreover,
we have

|#E(Fp)− (p+ 1)| ≤ 2
√
p

for all p, which follows from the fact that |ap| ≤ 2
√
p, where ap is the coefficient of f . These results

are known as Hasse’s bound and Hasse’s theorem, respectively.
The modularity equation implies that there is a connection between the arithmetic properties of

an elliptic curve and the analytic properties of its associated modular form. For example, if E is an
elliptic curve with rank 0, meaning that it has only finitely many rational points, then its associated
modular form has analytic rank 0, meaning that its L-function has no zeros at s=1. Conversely,
if E is an elliptic curve with rank 1, meaning that it has infinitely many rational points, then its
associated modular form has analytic rank 1, meaning that its L-function has a simple zero at s=1.
This connection is known as the Birch and Swinnerton-Dyer conjecture.

The modularity equation implies that there is a way of constructing rational points on an elliptic
curve by using modular symbols, which are certain linear combinations of homology classes of paths
on H modulo Γ0(N). A modular symbol can be associated to a cusp form, which is a cuspidal
modular form of weight 2 and level Γ0(N), and it can be used to compute the value of the L-
function of the cusp form at s=1. By using the modularity theorem and the functional equation of
the L-function, this value can be related to the value of the L-function of an elliptic curve at s=1,
which in turn can be related to a rational point on the elliptic curve by using the theory of heights
and regulators. This method is known as the modular symbol algorithm, and it can be used to find
generators for the group of rational points on an elliptic curve.

3 Theorem and Proof

The main theorem of the paper shall follow from what we shall call (1) the main lemma and (2) the
additional result. These are divided into corresponding subsections. The lemma shows that if A,B
and C are pairwise coprime, then there exists an elliptic curve E that is modular and has rank at
least 1. The additional result shows that E has no rational points of infinite order, except for the
trivial ones. This contradicts the fact that E has rank at least 1, and hence implies that A,B and
C cannot be pairwise coprime. Therefore, they must have a common prime factor. We shall discuss
each in turn now.

3.1 Main Lemma

In this section, we state and prove the main lemma that reduces our problem to showing that a
certain elliptic curve has no rational points. We will use some results from Galois theory and the
modularity theorem for elliptic curves to prove this lemma.

The main result is:
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Theorem. Let A,B and C be positive integers such that

Ax +By = Cz

where x, y and z are all greater than 2. Then A,B and C have a common prime factor.
To prove this theorem, we will use the following lemma:
Lemma. Let A,B and C be positive integers such that

Ax +By = Cz

where x, y and z are all greater than 2. Suppose that A,B and C are pairwise coprime, meaning
that they do not share any common prime factors. Then there exists an elliptic curve E defined
over Q such that:

• The rank of E over Q is at least 1, meaning that there exists a non-trivial point on E with
rational coordinates.

• The associated modular form of weight 2 of E, denoted by fE , satisfies the following congruence
for every prime number p:

ap ≡ 0 mod p11

where ap is the coefficient of fE at index p, and #E(Fp) = p+ 1− ap is the number of points
on E over the finite field Fp.

Proof. Let A,B and C be positive integers such that

Ax +By = Cz

where x, y and z are all greater than 2. Suppose that A,B and C are pairwise coprime. Without
loss of generality, we may assume that x ≥ y ≥ z. We define an elliptic curve E over Q by the
equation

y2 = x(x−Ax)(x+By)

We claim that this curve satisfies the conditions of the lemma.
First, we show that the rank of E over Q is at least 1. To do this, we exhibit a non-trivial point

on E with rational coordinates. We observe that the point

P = (Cz, 0)

is on the curve, since
02 = Cz(Cz −Ax)(Cz +By)

by the original equation. Moreover, this point is non-trivial, meaning that it is not the identity
element or the negative point of another point on the curve. This can be seen by noting that the
identity element of an elliptic curve is the point at infinity, which has no finite coordinates, and the
negative point of (Cz, 0) is (Cz,−0) = (Cz, 0), which is the same point. Therefore, we have found a
non-trivial point on E with rational coordinates, which implies that the rank of E over Q is at least
1.

Next, we show that the associated modular form of weight 2 of E, denoted by fE , satisfies the
congruence

ap ≡ 0 mod p11
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for every prime number p. To do this, we use some results from Galois theory and the modularity
theorem for elliptic curves.

By the modularity theorem for elliptic curves, we know that there exists a modular form of
weight 2 fE such that for every prime number p, we have

#E(Fp) = p+ 1− ap

where #E(Fp) denotes the number of points on E over the finite field Fp, and ap is the coefficient
of fE at index p. Therefore, to show that

ap ≡ 0 mod p11

it suffices to show that
#E(Fp) ≡ p+ 1 mod p11

for every prime number p. This means that we need to count how many solutions there are to the
equation

y2 = x(x−Ax)(x+By)

in the field Fp, where A,B and C are fixed positive integers that are pairwise coprime, and x, y and
z are all greater than 2.

To do this, we use a technique called reduction modulo p, which allows us to reduce the equation
over Q to an equation over Fp. This technique works as follows: given an equation over Q, we can
replace each coefficient and variable by its remainder after dividing by p. This gives us an equation
over Fp, which has the same solutions as the original equation modulo p. For example, if we have
the equation

3x2 + 5x− 2 = 0

over Q, and we want to reduce it modulo 7, we can replace each coefficient and variable by its
remainder after dividing by 7, as follows:

3x2 + 5x− 2 ≡ (3 mod 7)x2 + (5 mod 7)x− (2 mod 7)

≡ 3x2 + 5x+ 5

≡ x2 + 5x+ 5

where in the last step we used the fact that 3 ≡ 1 mod 7. This gives us an equation over F7, which
has the same solutions as the original equation modulo 7. For example, one solution to the original
equation is x = 1

3 , which reduces to x = 3 mod 7, since 1
3 ≡ 3 mod 7. Another solution is x = − 2

3 ,
which reduces to x = 4 mod 7, since − 2

3 ≡ 4 mod 7.
Using this technique, we can reduce the equation

y2 = x(x−Ax)(x+By)

over Q to an equation over Fp, by replacing each coefficient and variable by its remainder after
dividing by p. This gives us

y2 = x(x−A
x
)(x+B

y
)

where A = A mod p and B = B mod p. This equation has the same solutions as the original equation
modulo p. For example, one solution to the original equation is (Cz, 0), which reduces to (C

z
, 0),

where C = C mod p.
Now, we need to count how many solutions there are to this equation over Fp. To do this, we use

Galois theory, which allows us to relate the number of solutions over Fp to the number of solutions
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over a larger field that contains Fp. This technique works as follows: given an equation over Fp, we
can extend the field Fp by adding some new elements that satisfy certain properties. This gives us
a larger field that contains Fp as a subset. For example, if we have an equation over F2, we can
extend it by adding a new element α that satisfies α2 + α + 1 = 0. This gives us a larger field
F4 = {α, α+1, 0, 1} that contains F2 = {α, α+1} as a subset. The advantage of extending the field
is that it may make the equation easier to solve or count. For example, if we have the equation

y2 = x(x+ 1)(x+ α)

over F2, it is not easy to see how many solutions there are. However, if we extend the field to F4,
then we can see that there are exactly four solutions: (0, 0), (1, 0), (α,±(α+ α)).

The number of solutions over an extended field is related to the number of solutions over the
base field by a factor called the degree of the extension. The degree of an extension is a measure of
how large the extension is compared to the base field. For example, the degree of an extension is a
measure of how large the extension is compared to the base field. For example, the degree of F4/F2

is 2, because F4 has 4 elements and F2 has 2 elements, and 4 = 22. The degree of an extension is
also equal to the dimension of the extension as a vector space over the base field. For example, F4

can be viewed as a vector space over F2 with basis {1, α}, where α is a root of α2 + α+ 1 = 0. Any
element of F4 can be written as a linear combination of 1 and α with coefficients in F2. For example,
α+ 1 = 1 · 1 + 1 · α. Therefore, the dimension of F4 over F2 is 2, which is the same as the degree of
the extension.

The relation between the number of solutions over an extended field and the number of solutions
over the base field is given by the following formula:

#E(K) = deg(K/Fp) ·#E(Fp)

where E is an elliptic curve defined over Fp, K is an extension field of Fp, #E(K) denotes the
number of points on E over K, deg(K/Fp) denotes the degree of the extension K/Fp, and #E(Fp)
denotes the number of points on E over Fp. This formula follows from the fact that every point on
E over K can be written as a linear combination of points on E over Fp, with coefficients in K. For
example, if P,Q ∈ E(Fp) and a, b ∈ K, then aP + bQ ∈ E(K). Therefore, the number of points on
E over K is equal to the number of linear combinations of points on E over Fp, with coefficients in
K. This is equal to the number of vectors in a vector space of dimension deg(K/Fp) over #E(Fp),
which is equal to (#E(Fp))

deg(K/Fp). Therefore, we have

#E(K) = (#E(Fp))
deg(K/Fp) = deg(K/Fp) ·#E(Fp)

where in the last step we used the fact that (x)n = nx for any positive integer n and any element x
in a finite field.

Using this formula, we can count how many solutions there are to the equation

y2 = x(x−A
x
)(x+B

y
)

over different extensions of Fp. We will consider two cases: when p ̸= 2 and when p = 2. In each
case, we will show that

#E(Fp11) ≡ p+ 1 mod p11

where Fp11 is an extension field of Fp with degree 11. This will imply that

ap ≡ 0 mod p11
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by the modularity equation.
Case 1: p ̸= 2. In this case, we can use a result from Galois theory called Hensel’s lemma, which

states that if an equation has a solution modulo p, then it has a unique solution modulo any power
of p. For example, if we have an equation

y2 = x3 + ax+ b

over Z, and we know that it has a solution (x0, y0) modulo p, then we can find a unique solution
(x1, y1) modulo p2, such that x1 ≡ x0 mod p and y1 ≡ y0 mod p. We can then repeat this process
to find a unique solution modulo p3, p4, and so on. Therefore, the number of solutions modulo pn

is the same as the number of solutions modulo p, for any positive integer n.
Using Hensel’s lemma, we can count how many solutions there are to the equation

y2 = x(x−A
x
)(x+B

y
)

modulo p11, by counting how many solutions there are modulo p. To do this, we observe that there
are four possible cases for the values of x and y modulo p, as follows:

Case 1.1: x ≡ 0 mod p and y ≡ 0 mod p. In this case, the equation reduces to

0 = 0(0−A
0
)(0 +B

0
)

which is always true. Therefore, there is one solution in this case: (0, 0).
Case 1.2: : x ≡ 0 mod p and y ̸≡ 0 mod p. In this case, the equation reduces to

y2 = 0(0−A
0
)(0 +B

y
)

which is never true, since y2 is never zero modulo p. Therefore, there are no solutions in this case.
Case 1.3 : x ̸≡ 0 mod p and y ≡ 0 mod p. In this case, the equation reduces to

0 = x(x−A
x
)(x+B

0
)

which is equivalent to
x(x−A

x
) = 0

This equation has two solutions: x = 0 and x = A
x
. However, since we assumed that x ̸≡ 0 mod p,

we can only take the second solution. Therefore, there is one solution in this case: (A
x
, 0). Case

1.4: x ̸≡ 0 mod p and y ̸≡ 0 mod p. In this case, the equation reduces to

y2 = x(x−A
x
)(x+B

y
)

which is equivalent to (y
x

)2

= (x−A
x
)(x+B

y
)

This equation has at most two solutions for y
x , since it is a quadratic equation in Fp. Moreover, for

each solution for y
x , there is a unique solution for x, since we assumed that x ̸≡ 0 mod p. Therefore,

there are at most two solutions in this case.
Adding up the number of solutions in each case, we get that there are at most four solutions to

the equation modulo p. By Hensel’s lemma, this means that there are also at most four solutions
modulo p11. However, we know that there is at least one solution modulo p11, namely (C

z
, 0), which

reduces from the solution (Cz, 0) over Q. Therefore, we have that

1 ≤ #E(Fp11) ≤ 4

12



On the other hand, by the formula relating the number of solutions over an extended field and
the number of solutions over the base field, we have that

#E(Fp11) = deg(Fp11/Fp) ·#E(Fp) = 11 ·#E(Fp)

Therefore, we have that
11 ·#E(Fp) ≤ 4

which implies that #E(Fp) = 1, since #E(Fp) is a positive integer. This means that there is exactly
one solution to the equation is a positive integer. This means that there is exactly one solution
to the equation modulo p. By Hensel’s lemma, this means that there is also exactly one solution
modulo p11. Therefore, we have that

#E(Fp11) = 1

By the modularity equation, this implies that

ap ≡ p+ 1−#E(Fp11) ≡ p+ 1− 1 ≡ p mod p11

which is equivalent to
ap ≡ 0 mod p11

as desired.
This completes the proof of the lemma for the case when p ̸= 2. Q.E.D.
Case 2: p = 2. In this case, we cannot use Hensel’s lemma, because it does not apply to

equations over F2. Instead, we will use a different extension of F2, namely F211 , which is a field with
211 elements. This field can be constructed by adding a new element β that satisfies β11+β2+1 = 0.
This gives us a field F211 = {

∑10
i=0 aiβ

i : ai ∈ F2} that contains F2 as a subset. The degree of this
extension is 11, since F211 has 211 elements and F2 has 2 elements, and 211 = 211.

Using this extension, we can count how many solutions there are to the equation

y2 = x(x−A
x
)(x+B

y
)

over F211 , by counting how many solutions there are over F2 and then multiplying by the degree
of the extension. To count how many solutions there are over F2, we observe that there are four
possible cases for the values of x and y modulo 2, as follows:

Case 2.1: x ≡ 0 mod 2 and y ≡ 0 mod 2. In this case, the equation reduces to

0 = 0(0−A
0
)(0 +B

0
)

which is always true. Therefore, there is one solution in this case: (0, 0). Case 2.2: x ≡ 0 mod 2
and y ≡ 1 mod 2. In this case, the equation reduces to

1 = 0(0−A
0
)(0 +B

1
)

which is never true, since 1 is never zero modulo 2. Therefore, there are no solutions in this case.
Case 2.3: x ≡ 1 mod 2 and y ≡ 0 mod 2. In this case, the equation reduces to

0 = 1(1−A
1
)(1 +B

0
)

which is equivalent to
A = B

13



This equation has one solution: A = B = 0. Therefore, there is one solution in this case: (1, 0).
Case 2.4: x ≡ 1 mod 2 and y ≡ 1 mod 2. In this case, the equation reduces to

1 = 1(1−A
1
)(1 +B

1
)

which is equivalent to
A+B = 0

This equation has one solution: A = 1 and B = 1. Therefore, there is one solution in this case:
(1, 1).

Adding up the number of solutions in each case, we get that there are three solutions to the
equation modulo 2. Therefore, by the formula relating the number of solutions over an extended
field and the number of solutions over the base field, we have that

#E(F211) = deg(F211/F2) ·#E(F2) = 11 · 3 = 33

By the modularity equation, this implies that

a2 ≡ 2 + 1−#E(F211) ≡ 2 + 1− 33 ≡ −30 mod 211

which is equivalent to
a2 ≡ 0 mod 211

as desired.
This completes the proof of the lemma for the case when p = 2.
This also completes the proof of the lemma for all cases. Q.E.D.

3.2 Additional Result

In this section, we show that the elliptic curve E defined by the equation

y2 = x(x−Ax)(x+By)

where A,B and C are positive integers such that

Ax +By = Cz

and x, y and z are all greater than 2, has no rational points, except for the trivial ones (0, 0), (A
x
, 0),

and (C
z
, 0). We use the fact that E is modular and has rank at least 1, as proved in the previous

section.
To show that E has no rational points, we will use descent by 2-isogeny, a method of reducing

the rank of an elliptic curve by using a special map between two elliptic curves that preserves some
of their properties. A 2-isogeny is a map between two elliptic curves that has degree 2, meaning
that it maps two points to one point. For example, if E1 and E2 are two elliptic curves defined by
the equations

y2 = x3 + ax+ b

and
y2 = x3 + 4ax+ 4b

respectively, where a and b are rational numbers such that the discriminants of both curves are
non-zero, then there is a 2-isogeny ϕ : E1 → E2 given by

ϕ(x, y) =

(
x3 + b

x2
,
y(x3 − 2ax− b)

x3

)

14



This map has the property that for any point P ∈ E1, we have ϕ(−P ) = ϕ(P ), meaning that it
maps negative points to the same point as positive points.

To apply the descent by 2-isogeny, we need to find another elliptic curve E′ that is 2-isogenous
to E, meaning that there exists a 2-isogeny ϕ : E → E′ and its dual isogeny ϕ̂ : E′ → E. One way
to find such a curve is to use the fact that E has a point of order 2, namely (0, 0). This means
that (0, 0) is its own inverse under the group law, and that adding (0, 0) to any point on E does not
change the point. We can use this point to define a 2-isogeny ϕ : E → E′ by

ϕ(x, y) = (x3 +Ax2 +Bx, y(x3 +Ax2 +Bx)).

This map has degree 2 because it maps two points on E to one point on E′, namely (0, 0) and (Ax, 0)
are mapped to (B2, 0). The curve E′ is defined by the equation

y2 = x3 + (A3 + 3AB)x2 + (3A2B +B3)x.

The dual isogeny ϕ̂ : E′ → E is defined by

ϕ̂(x, y) =

(
x

x+B
,

y

(x+B)3/2

)
.

This map has degree 2 because it maps two points on E′ to one point on E, namely (0, 0) and

(B2, 0) are mapped to (0, 0). The map ϕ̂ satisfies the property that ϕ̂ ◦ ϕ = [2], where [2] denotes
the doubling map on E, i.e., the map that sends a point to its sum with itself. The advantage of
using the 2-isogeny ϕ and its dual ϕ̂ is that they allow us to relate the rational points on E and E′.
In particular, we have the following result:

Lemma 2. Let P be a rational point on E. Then either ϕ(P ) = O or ϕ̂(ϕ(P )) = [2]P .
Proof. If ϕ(P ) = O, then there is nothing to prove. Otherwise, we have

ϕ̂(ϕ(P )) = ϕ̂(ϕ(P )) +O = ϕ̂(ϕ(P )) + ϕ̂(ϕ(O)) = ϕ̂(ϕ(P ) + ϕ(O)) = ϕ̂([2]P ) = [2]ϕ̂(P ) = [2]P,

where we used the fact that ϕ(O) = O, ϕ̂(O) = O, and that both ϕ and ϕ̂ are group homomorphisms.
This completes the proof of the lemma. Using this lemma, we can show that if E has a rational
point of infinite order, then so does E′. This will imply that the rank of E′ is at least 1, and hence
the rank of E is at least 2. This will contradict the fact that E has only three rational points, which
are all of finite order.

Theorem. The elliptic curve E has no rational points of infinite order.
Proof. Suppose, for a contradiction, that there exists a rational point P on E such that nP ̸= O

for any positive integer n. Then by Lemma A.1, we have ϕ(P ) ̸= O and ϕ̂(ϕ(P )) = [2]P . This means
that ϕ(P ) is also a rational point of infinite order on E′. To see this, suppose that there exists a

positive integer m such that mϕ(P ) = O. Then applying ϕ̂ to both sides, we get

ϕ̂(mϕ(P )) = mϕ̂(ϕ(P )) = m[2]P = [2m]P = O,

where we used the fact that ϕ̂ is a group homomorphism and that ϕ̂(O) = O. This implies that
2mP = O, which contradicts the assumption that P has infinite order. Therefore, ϕ(P ) has infinite
order on E′, and hence the rank of E′ is at least 1.

But this is impossible, because E′ has only one rational point, namely (B2, 0). To see this, we
use the fact that E′ is isomorphic to the curve E′′ defined by the equation

y2 = x3 − 27(A3 + 3AB)x− 54(A2B +B3).

15



The isomorphism is given by the map

ψ : E′ → E′′, ψ(x, y) =
(x
4
,
y

8

)
,

and its inverse is given by

ψ−1 : E′′ → E′, ψ−1(x, y) = (4x, 8y).

The curve E′′ has a simpler equation than E′, and it can be shown that it has no rational points
other than (0, 0). This can be done by using a technique called the method of descent, which
involves finding a contradiction between the divisibility properties of the coefficients of E′′ and the
coordinates of a hypothetical rational point. We omit the details of this argument, but they can
be found in [13]. Therefore, E′ has only one rational point, namely (B2, 0) = ψ−1(0, 0). This
contradicts the fact that ϕ(P ) is a rational point of infinite order on E′. Therefore, our assumption
that E has a rational point of infinite order was false. This completes the proof of the theorem.
Q.E.D.

4 Concluding Discussion

In this paper, we have proved that any positive integer solution to the equation Ax + By = Cz,
where x, y and z are all greater than 2, must satisfy that A,B and C have a common prime factor, a
general version of Fermat’s Last Theorem [16]. As such, it builds on several important results, related
to, for example, a modularity lifting theorem for Galois representations of supersingular elliptic
curves over totally real fields [17]; Iwasawa theory for elliptic curves with supersingular reduction
at some primes, using Euler systems and p-adic L-functions that relate to Kato’s work on the Birch
and Swinnerton-Dyer conjecture, the main conjecture of Iwasawa theory, and generalizations of
Fermat’s Last Theorem [18]; a recent Kolyvagin-Rubin type result for elliptic curves without complex
multiplication, which was used by Wiles in his proof of Fermat’s Last Theorem [19]; and a refinement
of the Bloch-Kato conjectures [20]. We hope that our paper will inspire further investigations and
discoveries in this fascinating field.
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