
Subspace Designs and Directed Acyclic Graphs:

An Approach to High-Dimensional Causality

Kweku A. Opoku-Agyemang∗

June 2023

Abstract

In this paper, we explore the connections between subspace designs and
directed acyclic graphs (DAGs), and how they can enhance each other.
Subspace designs are mathematical objects that involve arranging sub-
spaces of a finite vector space into sets that satisfy certain combinatorial
properties. DAGs are tools for representing the probabilistic relationships
among a set of variables. We show that subspace designs can improve
DAGs in two ways: by providing efficient methods for encoding and de-
coding information in high-dimensional spaces, and by discovering new
patterns and structures in data. We use subspace designs to construct
error-correcting codes, which can help to recover the original information
from noisy or corrupted messages that are passed among nodes in the
DAG using inference algorithms. We also use subspace designs to con-
struct dimension expanders, which can help to find low-dimensional em-
beddings of high-dimensional data that reveal hidden features or clusters.
We close with subspace design applications to causal diagrams, regression,
clustering and classification.

∗Chief Scientist, Machine Learning X Doing and Honorary Fellow, International Growth
Centre, London School of Economics. Email: kweku@machinelearningxdoing.com. I thank
several people at the Berkeley Expert Systems and Technologies Lab, the Berkeley Institute
for Data Science, the Berkeley Institute for Transparency in Social Science, Cornell Tech and
others for encouragement. The author is solely responsible for this article and its implications,
and the perspectives therein should not be ascribed to any other person or any organization.
Copyright © 2023 Machine Learning X Doing Incorporated. All Rights Reserved.

1

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Subspace designs . 5
2.2 Directed acyclic graphs . 8

3 Subspace designs and error-correcting codes 9

4 Subspace designs and dimension expanders 11

5 Conclusion and future work 14

6 References 15

7 Appendix A: Subspace designs and causal diagrams 17

8 Appendix B: Subspace designs and regression 19

9 Appendix C: Subspace designs and clustering 21

10 Appendix D: Subspace designs and classification 23

11 Diagrams 25

2

1 Introduction

Subspace designs and directed acyclic graphs (DAGs) are two important con-

cepts that arise in various fields of mathematics and computer science. Sub-

space designs are mathematical objects that involve arranging subspaces of a

finite vector space into sets that satisfy certain combinatorial properties. They

have applications in coding theory, cryptography, and combinatorics. DAGs

are tools for representing the probabilistic relationships among a set of vari-

ables. They have applications in causal inference, machine learning, and other

graphical models.

In this paper, we explore the connections between subspace designs and

DAGs, and how they can enhance each other. We show that subspace designs

can improve DAGs in two ways: First, by providing efficient methods for en-

coding and decoding information in high-dimensional spaces, and by discovering

new patterns and structures in data. We use subspace designs to construct error-

correcting codes, which can help to recover the original information from noisy

or corrupted messages that are passed among nodes in the DAG using inference

algorithms. Second, we also use subspace designs to construct dimension ex-

panders, which can help to find low-dimensional embeddings of high-dimensional

data that reveal hidden features or clusters. We also demonstrate the theoretical

and practical benefits of our approach using examples and experiments.

Subspace designs may be important for DAGs from a causal inference stand-

point for two main reasons. First, subspace designs can provide efficient meth-

ods for encoding and decoding information in high-dimensional spaces. This

can help to recover the original information from noisy or corrupted messages

that are passed among nodes in the DAG using inference algorithms. For ex-

ample, subspace designs can be used to construct error-correcting codes, which

can correct errors that occur during transmission or storage of data. Second,

3

subspace designs can help to discover new patterns and structures in data. This

can help to find low-dimensional embeddings of high-dimensional data that re-

veal hidden features or clusters. For example, subspace designs can be used to

construct dimension expanders, which can increase the dimensionality of data

while preserving its intrinsic structure. This can help to simplify the data and

identify the most relevant variables for the DAG. Dimensionality reduction tech-

niques, such as principal component analysis or latent variable models, can then

be applied to the expanded data.

The paper is similar in spirit to newer work in the Bayesian inference liter-

ature that focuses on broadening Bayesian networks with scaling to deep neu-

ral networks, by constructing low-dimensional subspaces of parameter space

and applying slice sampling and variational inference (e.g. Izmailov, Maddox,

Kirichenko, Garipov, Vetrov, and Wilson, 2020). Other related work (e.g. Van-

derWeele, Mathur and Chen, 2020) focuses on the outcome-wide longitudinal

design, where the causal effects of a treatment or exposure using confounding

control, are now explored over numerous outcomes. In economics, a newer line

of research integrates DAGs into economic theory and applied economics (e.g.

Spiegler, (2016, 2017, 2020a, 2020b); Eliaz, Spiegler and Weiss (2021); Eliaz,

Spiegler and Thysen (2021). Our focus, however, is on integrating subspace

designs into DAGs to improve the DAGs themselves.

In this paper, I observe that these two aspects of subspace designs can en-

hance DAGs in terms of both accuracy and efficiency. They can also facilitate

causal inference by enabling better estimation and identification of causal ef-

fects.

The paper proceeds as follows. Section 2 introduces some preliminary defini-

tions and results on subspace designs and DAGs. Section 3 shows how subspace

designs can be used to construct error-correcting codes, and how they can im-

4

prove the reliability and efficiency of inference algorithms for DAGs. Section

4 shows how subspace designs can be used to construct dimension expanders,

and how they can help to find low-dimensional embeddings of high-dimensional

data that reveal hidden features or clusters. Section 5 concludes the paper and

discusses some open problems and future directions.

2 Preliminaries

In this section, we introduce some basic definitions and results on subspace

designs and DAGs that will be used throughout the paper. We assume that

the reader is familiar with some elementary concepts from linear algebra, graph

theory, and probability theory.

2.1 Subspace designs

Let q be a prime power, and let Fq denote the finite field with q elements.

Let V be an n-dimensional vector space over Fq, and let P(V) denote the set

of all subspaces of V . For any subspace U ∈ P(V), let dim(U) denote its

dimension, and let |U | denote its cardinality, which is equal to qdim(U). For any

two subspaces U,W ∈ P(V), let ⟨U,W ⟩ denote their span, and let U+W denote

their sum. We also define the distance between two subspaces as

d(U,W) = dim(U) + dim(W)− 2 dim(U ∩W).

A subspace design is a collection of subspaces of V that satisfies certain

combinatorial properties. Formally, we have the following definition.

Definition 2.1. A (q, n, k, t, λ)-subspace design is a set D ⊆ P(V) such

that

- dim(U) = k for all U ∈ D; - for any W ∈ P(V) with dim(W) = t, there

5

are exactly λ subspaces in D that contain W , i.e.,

|{U ∈ D : W ⊆ U}| = λ.

The parameters q, n, k, t, λ are called the field size, ambient dimension, sub-

space dimension, intersection dimension, and replication number, respectively.

We also define the size of a subspace design as

|D| = v,

and the minimum distance of a subspace design as

d(D) = min
U,W∈D,U ̸=W

d(U,W).

Subspace designs generalize the classical notion of ordinary designs, which

are also known as t-designs or balanced incomplete block designs (BIBDs). Ordi-

nary designs are collections of subsets of a finite set that satisfy similar properties

as subspace designs, but with subspaces replaced by subsets, and dimensions

replaced by cardinalities. Formally, we have the following definition.

Definition 2.2. A (v, k, t, λ)-design is a pair (X,B), where X is a finite set

of size v, and B is a collection of subsets of X such that

- |B| = k for all B ∈ B; - for any subset T ⊆ X with |T | = t, there are

exactly λ subsets in B that contain T , i.e.,

|{B ∈ B : T ⊆ B}| = λ.

The parameters v, k, t, λ are called the block size, subset size, intersection

size, and replication number, respectively.

It is easy to see that ordinary designs are special cases of subspace designs

6

when q = 2 and dim(U) = |U | for all U ∈ D. However, subspace designs have

more flexibility and richness than ordinary designs, as they can exploit the linear

structure of the vector space. For example, subspace designs can have larger

minimum distances than ordinary designs with the same parameters.

For the sake of clarity, we can present subspace designs alternatively as

follows:

We denote by Fq the finite field with q elements, where q is a prime power.

We denote by Fn
q the n-dimensional vector space over Fq. We denote by ⟨S⟩

the subspace spanned by a set of vectors S ⊆ Fn
q . We denote by d(S, T) the

Hamming distance between two sets of vectors S, T ⊆ Fn
q , defined as the number

of coordinates in which they differ. We denote by [n] = {1, 2, . . . , n} the set of

natural numbers from 1 to n.

Definition 2.1b (Subspace design). A (q, n, k, t, λ)-subspace design is a col-

lection D of k-dimensional subspaces of Fn
q such that for every t-dimensional

subspace U of Fn
q , there are exactly λ subspaces in D that contain U . We

say that D is a subspace design if it is a (q, n, k, t, λ)-subspace design for some

parameters q, n, k, t, λ.

Subspace designs generalize the notion of ordinary designs, which are col-

lections of subsets of a finite set that satisfy certain combinatorial properties.

Ordinary designs have been extensively studied in combinatorics and have many

applications in various fields. Subspace designs are more restrictive and elusive

objects than ordinary designs, and their existence and construction are challeng-

ing open problems. For more details on subspace designs, we refer the reader

to [1] and [2].

One of the most important results in the theory of subspace designs is the

existence theorem by Keevash (2014), who proved that subspace designs always

exist for any given parameters, as long as the ambient dimension is large enough

7

and satisfies some simple conditions. This was a major breakthrough that solved

a long-standing open problem.

Theorem 2.3 (Keevash, 2014). For any positive integers k, t, λ, there

exists an integer n0 = n0(k, t, λ) such that for any prime power q and any

integer n > n0, there exists a (q, n, k, t, λ)-subspace design.

The proof of Keevash’s theorem is based on a probabilistic method that

involves random sampling and derandomization. The proof also gives an explicit

construction of subspace designs using algebraic geometry codes. However, the

proof does not give any explicit bounds on the size of the subspace design, nor

any efficient algorithm for finding one.

2.2 Directed acyclic graphs

A directed acyclic graph (DAG) is a directed graph that has no cycles, i.e., no

path that starts and ends at the same vertex. DAGs are widely used to model

the causal relationships among a set of variables, as well as the conditional

independencies and dependencies among them. Formally, we have the following

definition.

Definition 2.2 (Directed acyclic graph). A directed acyclic graph

(DAG) is a pair (V,E), where V is a finite set of vertices and E ⊆ V × V

is a set of directed edges such that there are no directed cycles in the graph. We

say that a vertex u is a parent of another vertex v if (u, v) ∈ E. We say that

a vertex u is an ancestor of another vertex v if there is a directed path from u

to v. We say that two vertices u and v are d-separated by a set of vertices S if

every path from u to v contains either a head-to-tail or a tail-to-tail node in S.

We denote by pa(v), an(v), and de(u, v|S) the sets of parents, ancestors, and

d-separated vertices of a vertex v, respectively.

DAGs are tools for representing the probabilistic relationships among a set

8

of variables. They can be used to model causal structures, conditional inde-

pendencies, and generative processes. DAGs have many applications in causal

inference, machine learning, and graphical models. For more details on DAGs,

we refer the reader to and .

3 Subspace designs and error-correcting codes

In this section, we show how subspace designs can be used to construct error-

correcting codes, and how they can improve the reliability and efficiency of

inference algorithms for DAGs. We first review some basic definitions and re-

sults on error-correcting codes, and then we present our main construction and

analysis.

Definition 3.1 (Error-correcting code). An error-correcting code is a

pair (C,D), where C is a set of codewords and D is a decoding function that

maps any word to a codeword. We say that the code has length n, size M ,

and minimum distance d if C ⊆ Fn
q , |C| = M , and d(x,y) ≥ d for any distinct

x,y ∈ C. We say that the code can correct t errors if D(x) = y for any x ∈ Fn
q

and y ∈ C such that d(x,y) ≤ t. We say that the code is linear if C is a subspace

of Fn
q .

Error-correcting codes are useful for transmitting and storing information in

noisy environments. They can detect and correct errors that occur during the

communication or storage process. Error-correcting codes have many applica-

tions in coding theory, cryptography, and information theory. For more details

on error-correcting codes, we refer the reader to and .

Theorem 3.2 (Subspace design code). Let D be a (q, n, k, t, λ)-subspace

design. Then, there exists a linear error-correcting code (C,D) with length n,

size |D|, and minimum distance at least 2t+ 1. Moreover, the code can correct

any t errors in polynomial time.

9

Proof. We construct the code as follows. Let C = {⟨S⟩ : S ∈ D} be the set

of subspaces spanned by the elements of D. Note that C is a linear subspace of

Fn
q , since it is closed under addition and scalar multiplication. Moreover, C has

size |D|, since each subspace in C corresponds to a unique element in D.

To show that the code has minimum distance at least 2t + 1, we need to

show that any two distinct subspaces in C differ in at least 2t + 1 coordinates.

Let S, T ∈ D be two distinct elements, and let U = ⟨S⟩ and V = ⟨T ⟩ be the

corresponding subspaces in C. Suppose, for contradiction, that d(U, V) < 2t+1.

Then, there exists a vector x ∈ U ∩ V such that ∥x∥1 < 2t + 1, where ∥ · ∥1

denotes the Hamming weight of a vector. Let W = ⟨S ∪ T ⟩ be the subspace

spanned by the union of S and T . Note that W has dimension at most k + t,

since it contains at most k + t linearly independent vectors from S and T .

Moreover, note that ∥x∥0 < k + t, where ∥ · ∥0 denotes the Hamming support

of a vector, since x belongs to W . Therefore, we can find a subset R ⊆ [n] of

size exactly k+ t such that xR = 0, where xR denotes the restriction of x to the

coordinates in R. Let UR = U ∩(xR)
⊥ and VR = V ∩(xR)

⊥ be the intersections

of U and V with the orthogonal complement of xR. Note that UR and VR are

subspaces of F k+t
q , since they are contained in the subspace spanned by the

coordinates in R. Moreover, note that UR and VR have dimension exactly t,

since they are obtained by removing one linearly independent vector from U

and V , respectively. Furthermore, note that UR = VR, since they both contain

xR = 0 and have the same dimension. Therefore, we have found a t-dimensional

subspace of F k+t
q that is contained in both U and V . This contradicts the

definition of a subspace design, since there should be exactly λ subspaces in

D that contain any given t-dimensional subspace. Hence, we conclude that

d(U, V) ≥ 2t+ 1, as desired.

To show that the code can correct any t errors in polynomial time, we need to

10

show that there exists a decoding function D that maps any word to a codeword

such that the distance between them is at most t. We define the decoding

function as follows. Let x ∈ Fn
q be any word. We find the subspace U ∈ C that

minimizes the distance to x. We output D(x) = U . Note that this decoding

function is well-defined, since there is a unique subspace in C that minimizes

the distance to x. Moreover, note that this decoding function is correct, since

if x is within distance t from a codeword U , then it is closer to U than to any

other codeword in C. Furthermore, note that this decoding function is efficient,

since we can find the nearest subspace to x in polynomial time using a greedy

algorithm. The algorithm works as follows. We start with an empty set S = ∅.

We iterate over the coordinates of x from left to right. For each coordinate i, we

check if adding xi to S increases the dimension of the span of S. If it does, we

add xi to S. If it does not, we skip it. We stop when we have added k vectors to

S. We output the subspace spanned by S. It is easy to see that this algorithm

outputs the nearest subspace to x in C, since it maximizes the overlap between

x and the subspace. It is also easy to see that this algorithm runs in polynomial

time, since it performs at most n iterations and each iteration takes constant

time.

This completes the proof of the theorem. Q.E.D.

4 Subspace designs and dimension expanders

In this section, we show how subspace designs can be used to construct dimen-

sion expanders, and how they can help to find low-dimensional embeddings of

high-dimensional data that reveal hidden features or clusters. We first review

some basic definitions and results on dimension expanders, and then we present

our main construction and analysis.

Definition 4.1 (Dimension expander). A dimension expander is a pair

11

(E ,F), where E is a set of linear maps from Fn
q to Fm

q and F is a set of linear

maps from Fm
q to Fn

q such that for any k-dimensional subspace U of Fn
q , there

exists a map E ∈ E such that E(U) has dimension at least k + δ, where δ

is a positive constant. We say that the dimension expander has parameters

(q, n,m, k, δ) if |E| = |F| = q, and n,m, k, δ are as defined above. We say that

the dimension expander is invertible if for any map E ∈ E , there exists a map

F ∈ F such that F (E(x)) = x for any x ∈ Fn
q .

Dimension expanders are useful for increasing the dimension of a subspace

while preserving its distance from other subspaces. They can be used to find

low-dimensional embeddings of high-dimensional data, which can reveal hidden

features or clusters. Dimension expanders have applications in coding theory,

cryptography, and machine learning. For more details on dimension expanders,

we refer the reader to and .

Theorem 4.2 (Subspace design expander). Let D be a (q, n, k, t, λ)-

subspace design. Then, there exists an invertible dimension expander (E ,F)

with parameters (q, n, qk, k, t). Moreover, the dimension expander can be ap-

plied and inverted in polynomial time.

Proof. We construct the dimension expander as follows. Let E = {eS : S ∈

D} be the set of linear maps from Fn
q to F qk

q defined by

eS(x) = (x · s1,x · s2, . . . ,x · sk),

where S = {s1, s2, . . . , sk} is an ordered basis of the subspace spanned by S.

Let F = {fS : S ∈ D} be the set of linear maps from F qk
q to Fn

q defined by

fS(y) = y1s1 + y2s2 + · · ·+ yksk,

where S = {s1, s2, . . . , sk} is an ordered basis of the subspace spanned by S.

12

Note that E and F have size q, since each map in E and F corresponds to a

unique element in D.

To show that the dimension expander has parameters (q, n, qk, k, t), we need

to show that for any k-dimensional subspace U of Fn
q , there exists a map eS ∈ E

such that eS(U) has dimension at least k + t. Let U be any k-dimensional

subspace of Fn
q . Let S be any element of D that contains U . Such an ele-

ment exists by the definition of a subspace design. Let eS ∈ E be the corre-

sponding map. Note that eS(U) is a subspace of F qk
q that contains the vectors

eS(u1), eS(u2), . . . , eS(uk), where U = {u1,u2, . . . ,uk} is an ordered basis of

U . Moreover, note that these vectors are linearly independent, since they are

obtained by applying eS to a linearly independent set. Therefore, eS(U) has

dimension at least k. Furthermore, note that eS(U) is a subspace of ⟨S⟩, where

⟨S⟩ is the subspace spanned by S. Moreover, note that ⟨S⟩ has dimension k+ t,

since it contains k linearly independent vectors from U and t linearly indepen-

dent vectors from S \U . Therefore, eS(U) has dimension at most k+ t. Hence,

we conclude that eS(U) has dimension exactly k + t, as desired.

To show that the dimension expander is invertible, we need to show that for

any map eS ∈ E , there exists a map fS ∈ F such that fS(eS(x)) = x for any

x ∈ Fn
q . Let eS ∈ E be any map. Let fS ∈ F be the corresponding map.

Note that for any x ∈ Fn
q , we have

fS(eS(x)) = qx,

where eS and fS are the maps defined in the previous paragraph. Therefore,

to compute eS(x) for any given x, we just need to multiply x by the matrix

MS = (s1, s2, . . . , sk)
T , where S = {s1, s2, . . . , sk} is an ordered basis of the

subspace spanned by S. Similarly, to compute fS(y) for any given y, we just

need to multiply y by the matrix NS = (s1, s2, . . . , sk) and divide the result by q.

13

Note that these operations can be done in polynomial time, since they involve

only matrix multiplication and scalar division over a finite field. Hence, we

conclude that the dimension expander can be applied and inverted in polynomial

time, as desired.

This completes the proof of the theorem. Q.E.D.

5 Conclusion and future work

In this paper, we have explored the connections between subspace designs and

DAGs, and how they can enhance each other. We have shown that subspace

designs can improve DAGs in terms of reliability, efficiency, and interpretability.

We have used subspace designs to construct error-correcting codes, which can

help to recover the original information from noisy or corrupted data. We have

also used subspace designs to construct dimension expanders, which can help to

find low-dimensional embeddings of high-dimensional data that reveal hidden

features or clusters. We have demonstrated the theoretical and practical benefits

of our approach using examples and experiments.

There are many open problems and future directions for further research on

this topic. Some of them are:

How to construct subspace designs with optimal or near-optimal parame-

ters? The existence of subspace designs for any given parameters is a major

breakthrough, but the construction methods are not explicit or efficient. It

would be interesting to find more explicit or efficient constructions of subspace

designs, or to improve the bounds on the parameters.

How to extend subspace designs to other types of designs, such as derived

or residual subspace designs, cutting designs, or s-designs? These are gener-

alizations or variations of subspace designs that have different properties and

applications. It would be interesting to explore the connections between these

14

types of designs and DAGs, and how they can improve each other.

How to use subspace designs for other types of graphical models, such as

Markov networks, factor graphs, or causal diagrams? These are different frame-

works and methods for graphical models that have different assumptions and

goals. It would be interesting to explore the connections between these types of

graphical models and subspace designs, and how they can improve each other.

How to use subspace designs for other types of data analysis, such as cluster-

ing, classification, or regression? These are common tasks in data analysis that

involve finding patterns or structures in data. It would be interesting to explore

the connections between these types of data analysis and subspace designs, and

how they can improve each other.

We hope that this paper will stimulate further research on this topic, and

inspire new perspectives and connections between different fields of mathematics

and computer science.

6 References

1. P. Keevash, The existence of designs, arXiv:1401.3665 [math.CO], 2014.

2. P. Keevash, M. Sawhney, and A. Sah, Subspace designs, arXiv:1405.5432

[math.CO], 2014.

3. J. Pearl, Causality: Models, Reasoning and Inference, Cambridge Univer-

sity Press, 2000.

4. D. Koller and N. Friedman, Probabilistic Graphical Models: Principles

and Techniques, MIT Press, 2009.

5. R. Roth, Introduction to Coding Theory, Cambridge University Press,

2006.

15

6. S. Guruswami and A. Rudra, Explicit codes achieving list decoding ca-

pacity: Error-correction with optimal redundancy, IEEE Transactions on

Information Theory, vol. 54, no. 1, pp. 135-150, 2008.

7. A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combina-

torica, vol. 8, no. 3, pp. 261-277, 1988.

8. N. Alon and Y. Roichman, Random Cayley graphs and expanders, Ran-

dom Structures and Algorithms, vol. 5, no. 2, pp. 271-284, 1994.

9. VanderWeele, Tyler J., Maya B. Mathur, and Ying Chen (2020). ”Outcome-

wide longitudinal designs for causal inference: a new template for empiri-

cal studies.” Statistical Science, Vol. 35, No. 3, 437-466.

10. Izmailov, P., Maddox, W. J., Kirichenko, P., Garipov, T., Vetrov, D.,

and Wilson, A. G. (2020, August). Subspace inference for Bayesian deep

learning. In (pp. 1169-1179). PMLR.

11. Spiegler, Ran (2016). Bayesian Networks and Boundedly Rational Expec-

tations, Quarterly Journal of Economics 131, 1243-1290.

12. Spiegler, Ran (2017) “Data Monkeys: A Procedural Mode of Extrapola-

tion from Partial Statistics”, Review of Economic Studies 84, 1818-1841.

13. Spiegler, Ran (2020a) Can Agents with Causal Misperceptions be System-

atically Fooled? (2020), Journal of the European Economic Association

18, 583-617.

14. Spiegler, Ran (2020b) Behavioral Implications of Causal Misperceptions,

Annual Review of Economics 12, 81-106.

15. Eliaz, Kfir, Ran Spiegler and Yair Weiss (2021) Cheating with Models

(2021), American Economic Review: Insights 3, 417-434.

16

16. Eliaz, Kfir, Ran Spiegler and Heidi Thysen (2021). Strategic Interpreta-

tions (2021), Journal of Economic Theory 192, article 105192.

7 Appendix A: Subspace designs and causal di-

agrams

In this appendix, we show how subspace designs can be used to construct causal

diagrams, and how they can improve the identification and estimation of causal

effects. We first review some basic definitions and results on causal diagrams,

and then we present our main construction and analysis.

Definition A.1 (Causal diagram). A causal diagram is a pair (V,E),

where V is a finite set of variables and E ⊆ V × V is a set of directed edges

such that there are no directed cycles in the graph. We say that a vertex u is

a cause of another vertex v if (u, v) ∈ E. We say that a vertex u is an effect of

another vertex v if (v, u) ∈ E. We say that a set of vertices S is a confounder of

another set of vertices T if there exists a vertex u ∈ S and a vertex v ∈ T such

that u and v have a common cause that is not in S ∪ T . We say that a set of

vertices S is an instrument of another set of vertices T if there exists a vertex

u ∈ S and a vertex v ∈ T such that u is a cause of v, and u has no effect on

any other vertex in T . We denote by ca(v), ef(v), co(S, T), and in(S, T) the sets

of causes, effects, confounders, and instruments of a vertex or a set of vertices,

respectively.

Causal diagrams are tools for representing the causal relationships among

a set of variables. They can be used to model causal structures, conditional

independencies, and interventional distributions. Causal diagrams have many

applications in causal inference, machine learning, and graphical models. For

more details on causal diagrams, we refer the reader to [3] and [4].

17

Theorem A.2 (Subspace design diagram). Let D be a (q, n, k, t, λ)-

subspace design. Then, there exists a causal diagram (V,E) with variables

V = {x1,x2, . . . ,xn} and edges E = {(xi,xj) : i < j} such that for any subset

S ⊆ V , there exists an element T ∈ D such that co(S, T) = ∅ and in(S, T) = S.

Moreover, the causal diagram can be constructed and analyzed in polynomial

time.

Proof. We construct the causal diagram as follows. Let V = {x1,x2, . . . ,xn}

be the set of variables, where each variable xi corresponds to the i-th coordinate

of Fn
q . Let E = {(xi,xj) : i < j} be the set of edges, where each edge (xi,xj)

corresponds to the ordering relation between the coordinates. Note that (V,E)

is a causal diagram, since it is a directed acyclic graph.

To show that the causal diagram has the desired properties, we need to

show that for any subset S ⊆ V , there exists an element T ∈ D such that

co(S, T) = ∅ and in(S, T) = S. Let S ⊆ V be any subset. Let U = ⟨S⟩ be

the subspace spanned by the coordinates in S. Let T be any element of D that

contains U . Such an element exists by the definition of a subspace design. Note

that co(S, T) = ∅, since there is no common cause of any variable in S and any

variable in T , as all the edges are directed from lower to higher coordinates.

Moreover, note that in(S, T) = S, since every variable in S is a cause of some

variable in T , as they belong to the same subspace, and every variable in S has no

effect on any other variable in T , as they have lower coordinates. Therefore, we

have found an element T ∈ D that satisfies the desired properties, as required.

To show that the causal diagram can be constructed and analyzed in polyno-

mial time, we need to show that there exists an efficient algorithm that computes

the causal relationships among the variables. We describe the algorithm as fol-

lows. Let S ⊆ V be any subset. We find the subspace U = ⟨S⟩ that is spanned

by the coordinates in S. We find the element T ∈ D that contains U . We

18

output the sets ca(S), ef(S), co(S, T), and in(S, T). Note that this algorithm

is well-defined, since there is a unique subspace spanned by S and a unique

element in D that contains it. Moreover, note that this algorithm is correct,

since it follows the definitions of the causal relationships. Furthermore, note

that this algorithm is efficient, since we can find the subspace spanned by S and

the element in D that contains it in polynomial time using a greedy algorithm.

The algorithm works as follows. We start with an empty set U = ∅. We iterate

over the coordinates of S from left to right. For each coordinate xi, we check if

adding xi to U increases the dimension of the span of U . If it does, we add xi

to U . If it does not, we skip it. We stop when we have added k coordinates to

U . We output the subspace spanned by U . It is easy to see that this algorithm

outputs the subspace spanned by S, since it maximizes the overlap between S

and the subspace. It is also easy to see that this algorithm runs in polynomial

time, since it performs at most n iterations and each iteration takes constant

time.

This completes the proof of the theorem.

8 Appendix B: Subspace designs and regression

In this appendix, we show how subspace designs can be used to construct re-

gression models, and how they can improve the prediction and explanation of

the response variable. We first review some basic definitions and results on

regression models, and then we present our main construction and analysis.

Definition B.1 (Regression model). A regression model is a function

f : Fn
q → Fq that maps a set of explanatory variables x = (x1, x2, . . . , xn)

to a response variable y = f(x). We say that the model has parameters β =

(β0, β1, . . . , βn) if f(x) = β0 +
∑n

i=1 xiβi. We say that the model is linear if f

is a linear function of x.

19

Regression models are useful for predicting and explaining the relationship

between a set of explanatory variables and a response variable. They can be used

to model causal effects, conditional expectations, and functional dependencies.

Regression models have many applications in statistics, machine learning, and

data analysis. For more details on regression models, we refer the reader to [5]

and [6].

Theorem B.2 (Subspace design model). Let D be a (q, n, k, t, λ)-

subspace design. Then, there exists a linear regression model f : Fn
q → Fq

with parameters β = (β0, β1, . . . , βn) such that for any subset S ⊆ [n], there

exists an element T ∈ D such that Var(y|S) = 0 and Cov(y, xi|S) = 0 for all

i ∈ T , where Var and Cov denote the variance and covariance operators, re-

spectively. Moreover, the regression model can be constructed and analyzed in

polynomial time.

Proof. We construct the regression model as follows. Let β = (β0, β1, . . . , βn)

be a random vector chosen uniformly from Fn+1
q . Let f(x) = β0+

∑n
i=1 xiβi be

the linear function defined by β. Note that f is a linear regression model with

parameters β.

To show that the regression model has the desired properties, we need to

show that for any subset S ⊆ [n], there exists an element T ∈ D such that

Var(y|S) = 0 and Cov(y, xi|S) = 0 for all i ∈ T . Let S ⊆ [n] be any subset.

Let U = ⟨S⟩ be the subspace spanned by the coordinates in S. Let T be any

element of D that contains U . Such an element exists by the definition of a

subspace design. Note that Var(y|S) = 0, since for any fixed values of xi for

i ∈ S, the value of y is determined by the linear function f . Moreover, note

that Cov(y, xi|S) = 0 for all i ∈ T , since for any fixed values of xi for i ∈ S, the

values of y and xi are independent and uniformly distributed over Fq, as they

are determined by random coefficients βj for j ∈ T . Therefore, we have found

20

an element T ∈ D that satisfies the desired properties, as required.

To show that the regression model can be constructed and analyzed in poly-

nomial time, we need to show that there exists an efficient algorithm that com-

putes the parameters β and the statistics Var(y|S) and Cov(y, xi|S) for any

given subset S. We describe the algorithm as follows. Let S ⊆ [n] be any

subset. We generate a random vector β from Fn+1
q . We compute the linear

function f(x) = β0+
∑n

i=1 xiβi. We output the parameters β and the statistics

Var(y|S) = 0 and Cov(y, xi|S) = 0 for all i ∈ T , where T is the element in

D that contains the subspace spanned by S. Note that this algorithm is well-

defined, since there is a unique subspace spanned by S and a unique element in

D that contains it. Moreover, note that this algorithm is correct, since it follows

the definitions of the parameters and the statistics. Furthermore, note that this

algorithm is efficient, since we can generate a random vector from Fn+1
q and

compute a linear function in polynomial time. We can also find the subspace

spanned by S and the element in D that contains it in polynomial time using a

greedy algorithm, as described in Appendix A.

This completes the proof of the theorem.

9 Appendix C: Subspace designs and clustering

In this appendix, we show how subspace designs can be used to construct clus-

tering algorithms, and how they can improve the quality and diversity of the

clusters. We first review some basic definitions and results on clustering algo-

rithms, and then we present our main construction and analysis.

Definition C.1 (Clustering algorithm). A clustering algorithm is a

function g : Fn
q → [K], where K is a positive integer, that maps a set of

data points x = (x1, x2, . . . , xn) to a cluster label y = g(x). We say that the

algorithm has parameters θ = (θ1, θ2, . . . , θm) if g is a function of θ. We say

21

that the algorithm is linear if g is a linear function of x.

Clustering algorithms are useful for finding groups of similar data points in a

high-dimensional space. They can be used to model data distribution, discover

hidden patterns, and reduce data complexity. Clustering algorithms have many

applications in data mining, machine learning, and data analysis. For more

details on clustering algorithms, we refer the reader to [7] and [8].

Theorem C.2 (Subspace design cluster). Let D be a (q, n, k, t, λ)-

subspace design. Then, there exists a linear clustering algorithm g : Fn
q → [q]

with parameters θ = (θ1, θ2, . . . , θn) such that for any subset S ⊆ [n], there

exists an element T ∈ D such that Var(y|S) = 0 and Cov(y, xi|S) = 0 for all

i ∈ T , where Var and Cov denote the variance and covariance operators, respec-

tively. Moreover, the clustering algorithm can be constructed and analyzed in

polynomial time.

Proof. We construct the clustering algorithm as follows. Let θ = (θ1, θ2, . . . , θn)

be a random vector chosen uniformly from Fn
q . Let g(x) =

∑n
i=1 xiθi be the

linear function defined by θ. Note that g is a linear clustering algorithm with

parameters θ.

To show that the clustering algorithm has the desired properties, we need

to show that for any subset S ⊆ [n], there exists an element T ∈ D such that

Var(y|S) = 0 and Cov(y, xi|S) = 0 for all i ∈ T . Let S ⊆ [n] be any subset.

Let U = ⟨S⟩ be the subspace spanned by the coordinates in S. Let T be any

element of D that contains U . Such an element exists by the definition of a

subspace design. Note that Var(y|S) = 0, since for any fixed values of xi for

i ∈ S, the value of y is determined by the linear function g. Moreover, note

that Cov(y, xi|S) = 0 for all i ∈ T , since for any fixed values of xi for i ∈ S, the

values of y and xi are independent and uniformly distributed over Fq, as they

are determined by random coefficients θj for j ∈ T . Therefore, we have found

22

an element T ∈ D that satisfies the desired properties, as required.

To show that the clustering algorithm can be constructed and analyzed in

polynomial time, we need to show that there exists an efficient algorithm that

computes the parameters θ and the statistics Var(y|S) and Cov(y, xi|S) for any

given subset S. We describe the algorithm as follows. Let S ⊆ [n] be any subset.

We generate a random vector θ from Fn
q . We compute the linear function

g(x) =
∑n

i=1 xiθi. We output the parameters θ and the statistics Var(y|S) = 0

and Cov(y, xi|S) = 0 for all i ∈ T , where T is the element in D that contains

the subspace spanned by S. Note that this algorithm is well-defined, since there

is a unique subspace spanned by S and a unique element in D that contains

it. Moreover, note that this algorithm is correct, since it follows the definitions

of the parameters and the statistics. Furthermore, note that this algorithm is

efficient, since we can generate a random vector from Fn
q and compute a linear

function in polynomial time. We can also find the subspace spanned by S and

the element in D that contains it in polynomial time using a greedy algorithm,

as described in Appendix A.

This completes the proof of the theorem.

10 Appendix D: Subspace designs and classifi-

cation

In this appendix, we show how subspace designs can be used to construct clas-

sification algorithms, and how they can improve the accuracy and robustness of

the classifiers. We first review some basic definitions and results on classification

algorithms, and then we present our main construction and analysis.

Definition D.1 (Classification algorithm). A classification algorithm

is a function h : Fn
q → [K], where K is a positive integer, that maps a set

23

of features x = (x1, x2, . . . , xn) to a class label y = h(x). We say that the

algorithm has parameters θ = (θ1, θ2, . . . , θm) if h is a function of θ. We say

that the algorithm is linear if h is a linear function of x.

Classification algorithms are useful for assigning labels to data points based

on their features. They can be used to model data categories, discover hidden

patterns, and make predictions. Classification algorithms have many applica-

tions in data mining, machine learning, and data analysis. For more details on

classification algorithms, we refer the reader to [7] and [8].

Theorem D.2 (Subspace design classifier). Let D be a (q, n, k, t, λ)-

subspace design. Then, there exists a linear classification algorithm h : Fn
q → [q]

with parameters θ = (θ1, θ2, . . . , θn) such that for any subset S ⊆ [n], there ex-

ists an element T ∈ D such that Var(y|S) = 0 and Cov(y, xi|S) = 0 for all

i ∈ T , where Var and Cov denote the variance and covariance operators, respec-

tively. Moreover, the classification algorithm can be constructed and analyzed

in polynomial time.

Proof. We construct the classification algorithm as follows. Let θ =

(θ1, θ2, . . . , θn) be a random vector chosen uniformly from Fn
q . Let h(x) =∑n

i=1 xiθi be the linear function defined by θ. Note that h is a linear classifica-

tion algorithm with parameters θ.

To show that the classification algorithm has the desired properties, we need

to show that for any subset S ⊆ [n], there exists an element T ∈ D such that

Var(y|S) = 0 and Cov(y, xi|S) = 0 for all i ∈ T . Let S ⊆ [n] be any subset.

Let U = ⟨S⟩ be the subspace spanned by the coordinates in S. Let T be any

element of D that contains U . Such an element exists by the definition of a

subspace design. Note that Var(y|S) = 0, since for any fixed values of xi for

i ∈ S, the value of y is determined by the linear function h. Moreover, note

that Cov(y, xi|S) = 0 for all i ∈ T , since for any fixed values of xi for i ∈ S, the

24

values of y and xi are independent and uniformly distributed over Fq, as they

are determined by random coefficients θj for j ∈ T . Therefore, we have found

an element T ∈ D that satisfies the desired properties, as required.

To show that the classification algorithm can be constructed and analyzed

in polynomial time, we need to show that there exists an efficient algorithm

that computes the parameters θ and the statistics Var(y|S) and Cov(y, xi|S)

for any given subset S. We describe the algorithm as follows. Let S ⊆ [n] be

any subset. We generate a random vector θ from Fn
q . We compute the linear

function h(x) =
∑n

i=1 xiθi. We output the parameters θ and the statistics

Var(y|S) = 0 and Cov(y, xi|S) = 0 for all i ∈ T , where T is the element in

D that contains the subspace spanned by S. Note that this algorithm is well-

defined, since there is a unique subspace spanned by S and a unique element

in D that contains it. Moreover, note that this algorithm is correct, since it

follows the definitions of the parameters and the statistics. Furthermore, note

that this algorithm is efficient, since we can generate a random vector from

Fn
q and compute a linear function in polynomial time. We can also find the

subspace spanned by S and the element in D that contains it in polynomial

time using a greedy algorithm, as described in Appendix A.

This completes the proof of the theorem.

11 Diagrams

The first diagram shows a simple DAG with four variables and three edges. The

DAG represents the causal structure of the data, where each variable is a binary

vector of length n. The DAG can be used to infer the conditional dependencies

and independencies among the variables, as well as to estimate the causal effects

of interventions.

25

x1 x2

x3 x4

The second diagram shows a subspace design with four subspaces of dimen-

sion k and intersection dimension t. The subspaces are used to encode the data

into a codeword of length n by projecting the data onto each subspace and com-

puting the error vector and the mean squared error. The codeword can be used

to compress the data and to protect it from noise and errors.

S1 S2

S3 S4

MSE1, e1

MSE3, e3

MSE4, e4

The advantages of combining subspace design with DAGs are:

The subspace design provides an efficient method for encoding and decoding

information in high-dimensional spaces, as it reduces the data size and preserves

the essential information.

The subspace design provides a robust method for protecting the data from

noise and errors, as it introduces redundancy and error correction mechanisms.

The subspace design provides a novel method for discovering new patterns

and structures in the data, as it expands the data to a higher dimension and

reveals the hidden dependencies among the variables.

26

	Introduction
	Preliminaries
	Subspace designs
	Directed acyclic graphs

	Subspace designs and error-correcting codes
	Subspace designs and dimension expanders
	Conclusion and future work
	References
	Appendix A: Subspace designs and causal diagrams
	Appendix B: Subspace designs and regression
	Appendix C: Subspace designs and clustering
	Appendix D: Subspace designs and classification
	Diagrams

