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Abstract

This paper develops a framework for auction design for AI chatbots,
which are conversational agents that use natural language to interact with
users. We apply deep reinforcement learning (DRL) to optimize the bid-
ding strategies of the advertisers, who compete for ad slots in the chatbot
conversations. We also consider the goals and constraints of the chat-
bot owner or developer, who acts as the seller in our setting. We use
transformer-based language models (TLMs) to analyze the conversational
data of the users, who are the potential buyers of the advertised products
or services. We extend Border (1991), which shows how to construct an
auction from a given reduced form, which is a function that maps each
bidder’s type to his probability of winning. We show how to use DRL and
TLMs to learn and generate more realistic and flexible reduced forms,
which can capture the complex preferences and behaviors of advertisers,
and users, as well as the features and contexts of the ad slots and the chat-
bot conversations. We also show how to use market design, mechanism
design and user interface design principles to create and improve relevant
ad markets and institutions. We conclude with some guidelines and best
practices for auction design for AI chatbots.
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1 Introduction

But media executives see the technology, commonly known as gen-
erative AI, as a new existential threat. They worry people will find
chatbot summaries of articles good enough and not visit their web-
sites, stealing readers and advertisers, as earlier internet innovations
did.

–Bloomberg Technology (April 6, 20231).

The Bloomberg article discusses how AI chatbots, tools that can generate

text with machine learning may complicate standard online advertising mar-

kets. This concern makes rather clear the need to embed ad markets and in-

stitutions into chatbots in ways that are also helpful to platform stakeholders

with economic theory2.

Border (1991) is a foundational contribution in auction theory which shows

how to construct an auction from a given reduced form, or a function that maps

each bidder’s type to his probability of winning. The paper uses geometric

methods and the theorem of the alternative to prove that any feasible reduced

form can be implemented by an incentive compatible direct auction. However,

the approach is difficult to extend to the chatbot context, and this issue is the

subject of the paper.

In this paper, we attempt to address certain challenges that this paper and

its descendants in the genre (reviewed in Section 2) generally seem to face

and we also provide a framework that we hope minimizes these concerns. The

limitations we attempt to address are as follows:

1Bloomberg Technology (2023). AI Chatbots Are a Threat to News Media Outlets Like
NYT, News Corp, SPR

2Auction design is a fundamental problem in economic and computer science, where the
goal is to design mechanisms that achieve certain desirable properties, such as efficiency,
revenue, fairness, and incentive compatibility. Auctions are widely used mechanisms for al-
locating scarce resources or matching agents with different preferences or needs, and can be
applied to various domains and scenarios, such as selling goods or services, procuring inputs
or contracts, allocating spectrum or network resources, matching organ donors and recipients,
and many more.
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First, the bidder’s type is a single parameter that determines its probability

of winning, which may not capture the complexity and diversity of the bid-

der’s preferences and objectives. The bidders may have different goals and con-

straints, such as maximizing click-through rates, conversions, or brand aware-

ness, subject to budget or quality limits. Moreover, the bidders may learn and

adapt over time, as they observe the performance of their ads and the actions

of their competitors.

Second, the goods are homogeneous and independent, which may not reflect

the characteristics and contexts of the ad slots and the chatbot conversations.

The ad slots may vary in size, location, format, and content, depending on

the chatbot’s domain, functionality, and user interface. The ad slots may also

depend on the state and history of the conversation between the chatbot and

the user, such as the topic, tone, sentiment, and intent.

Finally, the seller’s design is based on a given reduced form, which may not

align with the seller’s goals and constraints. The seller may want to maximize

revenue from selling ad slots, but also balance other goals, such as user satis-

faction, engagement, retention, and trust. The seller may also face technical or

ethical challenges, such as ensuring privacy, security, fairness, and transparency.

To address these challenges, we propose a novel framework for auction design

for AI chatbots. We use deep reinforcement learning (DRL) to optimize the

bidding strategies of the advertisers. We use transformer-based language models

(TLMs) to analyze the conversational data of the users. We enhance Border’s

paper by using DRL and TLMs to learn and generate more realistic and flexible

reduced forms. We also use market design and mechanism design principles to

create and improve the ad markets and institutions for chatbots.

In this paper, we focus on the environment where the chatbot owner or

developer (the seller) wants to sell ad slots to advertisers (the bidders) who want
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to reach the users (the buyers) through the chatbot. Our main contributions

are:

We propose a general model of bidder types that can incorporate multiple

factors and feedback that affect the bidder’s utility from winning an ad slot.

We use DRL methods to learn a bidding strategy that maximizes the bidder’s

expected utility over time.

We also introduce a general model of goods that can account for multiple

features and dependencies that affect the value of an ad slot for a bidder and a

user. We use TLMs to generate natural language content for the ad slots that

matches the features and states of the conversation.

We share a general framework of seller design that can optimize for multiple

criteria and address potential trade-offs that affect the seller’s revenue and user

satisfaction from selling ad slots. We use market design and mechanism design

principles to ensure incentive compatibility, efficiency, fairness, and privacy.

The rest of this paper is organized as follows: Section 2 reviews some related

work on auction theory and design; Section 3 introduces some preliminaries

on DRL and TLMs; Section 4 presents our algorithmic framework for auction

design for AI chatbots; Section 5 reports our experimental results; Section 6

discusses some user interface design issues; Section 7 concludes with some future

directions. We provide additional details and guidelines for chatbot developers

and advertisers interested in our framework in the Appendix.

2 Literature Review

We review some related work on auction theory and design, focusing on three

main topics: reduced form auctions, multi-dimensional auctions, and dynamic

auctions.

Reduced form auctions are auctions where the outcome of the auction is
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determined by a function that maps each bidder’s type to his probability of

winning, without specifying the bidding or allocation rules. Some relevant work

include McAfee and Reny (1992), which found that any feasible reduced form

can be implemented by an incentive compatible indirect auction; Krishna and

Perry (1997), which show that any feasible reduced form can be implemented by

an incentive compatible sequential auction with bidders submitting bids in mul-

tiple rounds. Jehiel and Moldovanu (2001) show that any feasible reduced form

can be implemented by anincentive compatible random sampling auction, where

bidders are randomly selected to participate in the auction, and Bergemann and

Morris (2009) show that any feasible reduced form can be implemented by an

incentive compatible robust auction, where bidders have incomplete information

about the distribution of bidder types. Our departure from this line of work in

that we show how deep reinforcement learning and transformer-based language

models from computer science can help us better understand the economics of

chatbot auctions.

Machine learning chatbots are automated programs that often simulate hu-

man conversation through text, using natural language processing and other

techniques. Chatbots can be used for various purposes, such as providing cus-

tomer service, generating leads, or enhancing user engagement. One of the

potential applications of chatbots is to provide an environment where we can

conduct auctions, where bidders compete for goods or services by submitting

bids; either in multi-dimensional or dynamic auctions.

Multi-dimensional auctions are auctions where the goods or services have

multiple attributes that affect their value, such as quality, quantity, delivery

time, etc. Bidders can express their preferences for each attribute, and the

seller can allocate the goods or services based on the bids. Multi-dimensional

auctions can be used to sell complex or customized goods or services, such as
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cloud computing resources, spectrum licenses, or social outcomes. However,

designing multi-dimensional auctions poses several challenges, such as ensur-

ing incentive compatibility (i.e., bidders have an incentive to reveal their true

preferences) and computational efficiency (i.e., the auction can be solved in

a reasonable amount of time). Several works have addressed these challenges

by proposing optimal or approximate mechanisms for different settings and as-

sumptions. For example, Myerson (1981), Che (1993), and Armstrong (1996)

studied optimal multi-dimensional auctions for selling a single or multiple goods

with additive or multiplicative values. Cramton et al. (2006) designed practi-

cal multi-dimensional auctions for selling spectrum licenses with interdepen-

dencies and complementarities. Dütting et al. (2017) applied machine learning

techniques to design approximately optimal multi-dimensional auctions without

requiring strong assumptions on the distribution of bidder types.

On the other hand, Dynamic auctions are auctions where the bidding pro-

cess takes place over time, rather than in a single round. Bidders can update

their bids based on new information or events, and the seller can adjust the

allocation or pricing accordingly. Dynamic auctions can be used to sell goods

or services that have changing values over time, such as electricity, advertising

slots, or online goods . They can also be used to sell goods or services that are

interdependent, such as spectrum licenses or airport landing slots . However,

designing dynamic auctions poses several challenges, such as ensuring revenue

optimality (i.e., maximizing the seller’s expected revenue) and robustness (i.e.,

performing well under different market conditions and bidder behaviors). Sev-

eral works have addressed these challenges by proposing optimal or approximate

mechanisms for different settings and assumptions. For example, Milgrom and

Weber (1982) , Parkes and Singh (2003) , and Athey and Segal (2007) studied

optimal dynamic auctions for selling a single or multiple goods with common or
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private values that are revealed over time. Feldman et al. (2015) designed ap-

proximately optimal dynamic auctions for selling online goods with stochastic

arrivals and departures. Babaioff et al. (2019) applied online learning tech-

niques to design robust dynamic auctions for selling online goods with unknown

distributions of bidder types.

We build on these by showing how to use deep reinforcement learning and

transformer-based language models to enhance advertising markets and institu-

tions, with an emphasis on the context of AI chatbots.

3 Deep reinforcement learning (DRL) and

Transformer-based language models (TLMs)

We discuss some preliminaries on the main terms and techniques that are rele-

vant to our framework for auction design for AI chatbots.

DRL is a branch of machine learning that deals with learning from trial and

error, based on rewards and penalties. DRL can be used to optimize the bidding

strategies of the advertisers, who are the bidders in our setting. DRL can help

the bidders to adapt to changing market conditions, such as demand, supply,

competition, and user behavior. DRL can also help the bidders to balance

exploration and exploitation, meaning that the bidders can try new actions

to discover better strategies, while also exploiting the current best strategy to

maximize their utility. Some examples of DRL methods that can be used for

bidding optimization are Q-learning, policy gradient, and actor-critic.

Q-learning is a DRL method that learns a value function that estimates

the expected future reward for each state-action pair. The value function is

updated iteratively using the Bellman equation, which expresses the value of a

state-action pair as the sum of the immediate reward and the discounted value
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of the next state-action pair. The bidder can use Q-learning to learn a bidding

strategy that maximizes its expected future reward over time.

Policy gradient is a DRL method that learns a policy function that maps

each state to a probability distribution over actions. The policy function is

updated iteratively using the gradient ascent algorithm, which adjusts the pol-

icy parameters in the direction of increasing the expected reward. The bidder

can use policy gradient to learn a bidding strategy that directly optimizes its

expected reward.

Actor-critic is a DRL method that combines Q-learning and policy gra-

dient. It learns both a value function and a policy function, where the value

function acts as a critic that evaluates the performance of the policy function,

and the policy function acts as an actor that executes actions based on the feed-

back from the value function. The bidder can use actor-critic to learn a bidding

strategy that balances exploration and exploitation.

TLMs are neural network models that can process natural language data.

TLMs can be used to analyze the conversational data of the users, who are the

buyers in our setting. TLMs can help the chatbot to provide more relevant

and personalized responses, based on the user’s needs and emotions. TLMs can

also help the chatbot to generate natural and engaging language, using tech-

niques such as natural language generation, text summarization, and dialogue

management.

Natural language generation (NLG) is a technique that can generate

natural language text from non-linguistic input, such as data, images, or key-

words. NLG can be used to generate natural language content for the ad slots

that matches the features and states of the conversation.

Text summarization is a technique that can produce a concise summary

of a longer text, such as an article, a document, or a transcript. Text summa-
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rization can be used to provide a brief overview of the ad content or the product

or service being advertised.

Dialogue management is a technique that can manage the flow and struc-

ture of a conversation between two or more agents, such as a chatbot and a user.

Dialogue management can be used to maintain coherence and consistency in the

chatbot responses, as well as to handle user requests, questions, feedback, or in-

terruptions.

Transformer is a neural network architecture that uses attention mecha-

nisms to encode and decode natural language data. Transformer can handle

long-range dependencies and parallel computations better than traditional re-

current or convolutional neural networks. Transformer is the basis of many

state-of-the-art TLMs, such as BERT, GPT-3, and T53.

4 Environment

We use some notation throughout this paper: N denotes the set of bidders; M

denotes the set of goods; X denotes the set of bidder types; Y denotes the set of

good types; Z denotes the set of seller types; xi ∈ X denotes the type of bidder

i ∈ N ; yj ∈ Y denotes the type of good j ∈ M ; z ∈ Z denotes the type of the

seller; π : N ×X × Y × Z → [0, 1] denotes the reduced form, which maps each

bidder’s type and each good’s type and each seller’s type to the probability of

winning that good; p : N ×X × Y × Z → R denotes the payment rule, which

3BERT (Bidirectional Encoder Representations from Transformers) is a TLM that uses a
bidirectional transformer encoder to learn contextual representations of words from large-scale
unlabeled text data. BERT can be fine-tuned for various natural language understanding
tasks, such as question answering, sentiment analysis, or entity recognition. GPT-3 and 4
(Generative Pre-trained Transformer 3 and 4) are TLMs that use an autoregressive transformer
decoder to generate natural language text from an input prompt. These can be used for various
natural language generation tasks, such as text completion, text summarization, or dialogue
generation. T5 (Text-To-Text Transfer Transformer) is a TLM that uses an encoder-decoder
transformer architecture to convert any natural language input into any natural language
output. T5 can be used for various natural language processing tasks, such as translation,
paraphrasing, or text simplification.
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maps each bidder’s type and each good’s type and each seller’s type to the

payment for that good; ui : X ×Y → R denotes the utility function of bidder i,

which maps each bidder’s type and each good’s type to the value of that good

for that bidder; v : Y → R denotes the value function of the user, which maps

each good’s type to the value of that good for the user; r : Z → R denotes the

revenue function of the seller, which maps each seller’s type to the revenue from

selling all goods.

5 Auction design for AI chatbots

We propose a general model of bidder types, goods, and seller design, and show

how to use DRL and TLMs to learn and generate more realistic and flexible

reduced forms. We also show how to use market design and mechanism design

principles to create and improve the ad markets and institutions for chatbots.

We consider a setting where there is a chatbot (the seller) that interacts

with a user (the buyer) through natural language. The chatbot can sell ad slots

to advertisers (the bidders) who want to reach the user through the chatbot.

The chatbot can also provide other services or functions to the user, such as

information, entertainment, education, health care, etc.

We assume that each bidder i ∈ N has a type xi ∈ X, which is a vector of

parameters that describe the bidder’s preferences and objectives. For example,

the bidder’s type can include its budget, its target audience, its product or

service category, its quality or performance requirements, etc. We assume that

each bidder’s type is private information, meaning that only the bidder knows

its own type.

We assume that each good j ∈ M has a type yj ∈ Y , which is a vector of

parameters that describe the good’s characteristics and contexts. For example,

the good’s type can include its size, location, format, and content, as well as
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the state and history of the conversation between the chatbot and the user.

We assume that each good’s type is public information, meaning that everyone

knows the type of each good.

We assume that the seller has a type z ∈ Z, which is a vector of parameters

that describe the seller’s goals and constraints. For example, the seller’s type

can include its revenue target, its user satisfaction target, its privacy or security

policies, its fairness or transparency criteria, etc. We assume that the seller’s

type is public information, meaning that everyone knows the type of the seller.

We assume that there is a reduced form π : N × X × Y × Z → [0, 1],

which maps each bidder’s type and each good’s type and each seller’s type to

the probability of winning that good. We assume that there is a payment rule

p : N ×X × Y × Z → R, which maps each bidder’s type and each good’s type

and each seller’s type to the payment for that good. We assume that there is

a utility function ui : X × Y → R for each bidder i, which maps each bidder’s

type and each good’s type to the value of that good for that bidder. We assume

that there is a value function v : Y → R for the user, which maps each good’s

type to the value of that good for the user. We assume that there is a revenue

function r : Z → R for the seller, which maps each seller’s type to the revenue

from selling all goods.

We define an auction as a tuple (π, p), where π is the reduced form and p is

the payment rule. We define an outcome of an auction as a tuple (ω, τ), where

ω is an allocation vector and τ is a payment vector. The allocation vector ω

specifies which bidder wins which good, such that ωij = 1 if bidder i wins good

j, and ωij = 0 otherwise. The payment vector τ specifies how much each bidder

pays for each good, such that τij is the payment of bidder i for good j. We

define an auction mechanism as a function that maps each bidder’s type and

each good’s type and each seller’s type to an outcome of an auction.

12



We define incentive compatibility as a property of an auction mechanism

that ensures that bidders have an incentive to reveal their true types. Formally,

an auction mechanism is incentive compatible if for any bidder i and any types

xi, x
′
i,

ui(xi, ω(xi, x−i, y, z), τ(xi, x−i, y, z)) ≥ ui(xi, ω(x
′
i, x−i, y, z), τ(x

′
i, x−i, y, z))

where x−i denotes the types of all bidders except i, ω(x, y, z) denotes the al-

location vector resulting from types (x, y, z), and τ(x, y, z) denotes the payment

vector resulting from types (x, y, z).

We define efficiency as a property of an auction mechanism that ensures

that goods are allocated to the bidders who value them the most. Formally, an

auction mechanism is efficient if for any outcome (ω, τ) and any bidder i and

any good j,

ωij = 1ui(xi, yj) ≥ uk(xk, yj) ∀k ∈ N

We define revenue optimality as a property of an auction mechanism that

ensures that the seller maximizes its expected revenue from selling goods. For-

mally, an auction mechanism is revenue optimal if for any outcome (ω, τ) and

any seller type z,

r(z) = E[
∑
i∈N

∑
j∈M

τij ]

where the expectation is taken over the distribution of bidder types and good

types.

We define fairness as a property of an auction mechanism that ensures that

bidders are treated equally or equitably. Formally, an auction mechanism is fair
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if for any outcome (ω, τ) and any bidders i, k,

ωij = ωkjτij = τkj ∀j ∈ M

or

ui(xi, ω(x, y, z), τ(x, y, z)) = uk(xk, ω(x, y, z), τ(x, y, z))

We define privacy as a property of an auction mechanism that ensures that

bidders’ types are not revealed or leaked. Formally, an auction mechanism is

private if for any bidder i and any types xi, x
′
i,

P [ω(xi, x−i, y, z) = ω(x′
i, x−i, y, z)] = 1

and

P [τ(xi, x−i, y, z) = τ(x′
i, x−i, y, z)] = 1

where the probabilities are taken over the randomness of the auction mech-

anism.

We now present our framework for auction design for AI chatbots. Our

framework consists of four main steps of an algorithm. The first step is to

learn the bidder types using DRL. The second step is to generate good types

using TLMs. The third step is to learn reduced forms using DRL and TLMs.

Finally, step four is to deisgn auctions using market design and mechanism

design principles. We describe each step in detail in the following subsections.
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5.1 Step 1: Learn bidder types using DRL

In this step, we use DRL methods to learn the bidder types from the bidding

data. The bidding data consists of the bids submitted by the bidders for the

ad slots, as well as the outcomes of the auctions, such as the allocation and

the payment. The bidding data can be obtained from historical records, online

platforms, or simulations.

We model the bidding problem as a Markov decision process (MDP), where

each bidder is an agent that interacts with an environment. The environment

consists of the chatbot, the user, the ad slots, and the other bidders. The agent’s

state is its type, which is a vector of parameters that describe its preferences

and objectives. The agent’s action is its bid, which is a vector of values that

specify how much it is willing to pay for each ad slot. The agent’s reward is its

utility, which is the difference between its value and its payment for the ad slot

that it wins.

We use DRL methods to learn a policy function that maps each state to a

probability distribution over actions. The policy function represents the bidding

strategy of the agent, which determines how it should bid in each situation. The

policy function is parameterized by a neural network, which can be trained using

various algorithms, such as Q-learning, policy gradient, or actor-critic.

The objective of the agent is to maximize its expected cumulative reward

over time, which can be expressed as:

max
θ

Eπθ
[

T∑
t=0

γtrt(xt, ωt, τt)]

where θ are the neural network parameters, πθ is the policy function, T is

the time horizon, γ is the discount factor, rt is the reward function, xt is the

state at time t, ωt is the allocation at time t, and τt is the payment at time t.

By learning the bidder types using DRL, we can capture the complex pref-
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erences and behaviors of the bidders, as well as their adaptation and learning

over time. We can also handle different market conditions and bidder interac-

tions, such as competition, collusion, or entry and exit. We can also balance

exploration and exploitation, meaning that we can try new bids to discover bet-

ter strategies, while also exploiting the current best strategy to maximize our

utility.

5.2 Step 2: Generate good types using TLMs

In this step, we use TLMs to generate the good types from the conversational

data. The conversational data consists of the natural language input and output

of the user and the chatbot, as well as the features and states of the conversa-

tion. The conversational data can be obtained from historical records, online

platforms, or simulations.

We model the good generation problem as a natural language generation

(NLG) task, where the input is the conversational data and the output is the

natural language content for the ad slots. The natural language content repre-

sents the good type, which is a vector of parameters that describe the good’s

characteristics and contexts.

We use TLMs to generate natural language content for the ad slots that

matches the features and states of the conversation. The TLMs are neural

network models that can process natural language data using attention mech-

anisms. The TLMs can handle long-range dependencies and parallel computa-

tions better than traditional recurrent or convolutional neural networks. The

TLMs are pre-trained on large-scale unlabeled text data, and can be fine-tuned

for various NLG tasks, such as text completion, text summarization, or dialogue

generation.

The objective of the TLMs is to maximize the likelihood of generating nat-
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ural language content that is relevant, coherent, and engaging for the user and

the advertiser. The likelihood can be expressed as:

max
ϕ

Pθϕ [y|x, c, s]

where ϕ are the neural network parameters, θϕ is the TLM function, y is the

natural language content for the ad slot, x is the natural language input of the

user, c is the natural language output of the chatbot, and s is the feature and

state vector of the conversation.

By generating good types using TLMs, we can capture the complexity and

diversity of the ad slots and the chatbot conversations. We can also provide more

relevant and personalized responses, based on the user’s needs and emotions.

We can also generate natural and engaging language, using techniques such as

natural language generation, text summarization, and dialogue management.

5.3 Step 3: Learn reduced forms using DRL and TLMs

In this step, we use DRL and TLMs to learn the reduced forms from the bidding

data and the conversational data. The reduced form is a function that maps

each bidder’s type and each good’s type and each seller’s type to the probability

of winning that good. The reduced form represents the outcome of the auction,

which determines which bidder wins which good and how much it pays.

We model the reduced form learning problem as a supervised learning task,

where the input is the bidder types, the good types, and the seller type, and the

output is the probability of winning for each bidder-good pair. The probability

of winning represents the reduced form, which is a vector of values that specify

how likely each bidder is to win each good.

We use DRL and TLMs to learn the reduced form from the data. The DRL

methods can capture the complex preferences and behaviors of the bidders, as
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well as their adaptation and learning over time. The TLM methods can capture

the complexity and diversity of the ad slots and the chatbot conversations, as

well as provide more relevant and personalized responses. The DRL and TLM

methods can work together to learn a more realistic and flexible reduced form,

which can account for multiple factors and feedback that affect the outcome of

the auction.

The objective of the DRL and TLMmethods is to minimize the error between

the predicted probability of winning and the actual probability of winning, which

can be expressed as:

min
θ,ϕ

Eπθ,θϕ [
∑
i∈N

∑
j∈M

(πθ(xi, yj , z)− π∗(xi, yj , z))
2]

where θ are the DRL parameters, ϕ are the TLM parameters, πθ is the DRL

function, θϕ is the TLM function, π∗ is the true reduced form, xi is the bidder

type, yj is the good type, and z is the seller type.

By learning the reduced forms using DRL and TLMs, we can enhance Bor-

der’s paper by using modern economic auction and/or newer mathematical tools

for the AI chatbot context. We can also handle different market conditions and

bidder interactions, such as competition, collusion, or entry and exit. We can

also balance exploration and exploitation, meaning that we can try new reduced

forms to discover better outcomes, while also exploiting the current best reduced

form to maximize our utility.

5.4 Step 4: Design auctions using market design and mech-

anism design principles

We use market design and mechanism design principles to create and improve

the ad markets and institutions for chatbots. The market design and mech-

anism design principles can help us to ensure that the auctions are incentive
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compatible, efficient, revenue optimal, fair, and private.

We use Border’s paper as a starting point for designing auctions from the

reduced forms that we learned in the previous step. Border’s paper shows how

to construct an incentive compatible direct auction from a given reduced form,

using geometric methods and the theorem of the alternative. However, Border’s

paper does not address other properties or criteria that may be important for

the chatbot context, such as efficiency, revenue, fairness, or privacy. Therefore,

we need to extend and generalize Border’s paper to incorporate these aspects.

We use the following steps to design auctions using market design and mech-

anism design principles.

1. Step 4.1: Define the objectives and constraints of the seller

2. Step 4.2: Define the criteria and metrics for evaluating the auctions

3. Step 4.3: Select or design an auction mechanism that satisfies the objec-

tives, constraints, criteria, and metrics

4. Step 4.4: Test and refine the auction mechanism using simulations or

experiments

We describe each step in detail in the following subsections.

5.4.1 Step 4.1: Define the objectives and constraints of the seller

In this step, we define the objectives and constraints of the seller, who is the

chatbot owner or developer in our setting. The objectives and constraints of

the seller can vary depending on the domain, functionality, and user interface

of the chatbot, as well as the ethical or social norms and regulations that apply

to the chatbot.

The objectives of the seller are the goals that the seller wants to achieve

from selling ad slots to advertisers through the chatbot. The objectives can be
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expressed as functions of the seller’s type, the bidder types, the good types, and

the outcome of the auction. For example, some possible objectives of the seller

are:

(i) Maximize revenue: The seller wants to maximize its revenue from selling

ad slots, which can be expressed as:

r(z) = E[
∑
i∈N

∑
j∈M

τij ]

where r is the revenue function, z is the seller’s type, τ is the payment

vector, and the expectation is taken over the distribution of bidder types and

good types.

(ii) Maximize user satisfaction: The seller wants to maximize its user sat-

isfaction from providing services or functions to the user through the chatbot,

which can be expressed as:

s(z) = E[v(yj)− απθ(xi, yj , z)]

where s is the user satisfaction function, z is the seller’s type, v is the value

function of the user, yj is the good type, α is a parameter that measures the

user’s aversion to ads, πθ is the reduced form learned by DRL, xi is the bidder

type, and the expectation is taken over the distribution of bidder types and

good types.

(iii) Maximize social welfare: The seller wants to maximize its social welfare

from selling ad slots to advertisers through the chatbot, which can be expressed

as:

w(z) = E[
∑
i∈N

∑
j∈M

ui(xi, yj) + v(yj)]

where w is the social welfare function, z is the seller’s type, ui is the utility
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function of bidder i, xi is the bidder type, v is the value function of the user,

yj is the good type, and the expectation is taken over the distribution of bidder

types and good types.

The constraints of the seller are the limitations or requirements that the

seller has to respect or satisfy when selling ad slots to advertisers through the

chatbot. The constraints can be expressed as inequalities or equalities that

involve the seller’s type, the bidder types, the good types, and the outcome of

the auction. For example, some possible constraints of the seller are:

(a) Privacy constraint: The seller has to protect the privacy of the bidders

and the users, meaning that their types are not revealed or leaked to anyone.

The privacy constraint can be expressed as:

P [ω(x, y, z) = ω(x′, y′, z′)] = 1

and

P [τ(x, y, z) = τ(x′, y′, z′)] = 1

where ω is the allocation vector, τ is the payment vector, x, x′ are the bidder

types, y, y′ are the good types, z, z′ are the seller types, and the probabilities

are taken over the randomness of the auction mechanism.

(b) Fairness constraint: The seller has to ensure that bidders are treated

equally or equitably when selling ad slots to advertisers through the chatbot.

The fairness constraint can be expressed as:

ωij = ωkjτij = τkj ∀j ∈ M

or

21



ui(xi, ω(x, y, z), τ(x, y, z)) = uk(xk, ω(x, y, z), τ(x, y, z))

where ω is the allocation vector, τ is the payment vector, xi, xk are the bidder

types, y is the good type, z is the seller type, and i, k are any two bidders.

(c) Quality constraint: The seller has to maintain a certain level of quality or

performance for the ad slots and the chatbot services or functions. The quality

constraint can be expressed as:

q(yj) ≥ Q ∀j ∈ M

and

f(c) ≥ F

where q is the quality function of the ad slot, yj is the good type, Q is the

minimum quality threshold, f is the performance function of the chatbot, c is

the natural language output of the chatbot, and F is the minimum performance

threshold.

By defining the objectives and constraints of the seller, we can specify what

the seller wants to achieve and what the seller has to respect or satisfy when

selling ad slots to advertisers through the chatbot. We can also align the seller’s

objectives and constraints with the ethical or social norms and regulations that

apply to the chatbot.

5.4.2 Step 4.2: Define the criteria and metrics for evaluating the

auctions

In this step, we define the criteria and metrics for evaluating the auctions that

we design in the previous step. The criteria and metrics can help us to measure
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how well the auctions achieve the objectives and satisfy the constraints of the

seller, as well as how they affect the bidders and the users.

The criteria are the properties or characteristics that we want the auctions

to have, such as incentive compatibility, efficiency, revenue optimality, fairness,

or privacy. The criteria can be derived from the objectives and constraints

of the seller, as well as from the ethical or social norms and regulations that

apply to the chatbot. The criteria can be expressed as logical statements or

mathematical expressions that involve the seller’s type, the bidder types, the

good types, and the outcome of the auction.

The metrics are the quantitative measures that we use to evaluate the auc-

tions based on the criteria. The metrics can be calculated from the data or

simulated from the models that we use in our framework. The metrics can be

expressed as numbers or functions that indicate how well or how poorly the

auctions perform according to the criteria.

For example, some possible criteria and metrics for evaluating the auctions

are:

Incentive compatibility: The auction should ensure that bidders have an

incentive to reveal their true types. The metric for incentive compatibility is

the truthfulness ratio, which is the fraction of bidders who report their true

types in the auction.

Efficiency: The auction should ensure that goods are allocated to the bidders

who value them the most. The metric for efficiency is the allocative efficiency,

which is the ratio of the actual social welfare to the optimal social welfare in

the auction.

Revenue optimality: The auction should ensure that the seller maximizes its

expected revenue from selling goods. The metric for revenue optimality is the

revenue ratio, which is the ratio of the actual revenue to the optimal revenue in
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the auction.

Fairness: The auction should ensure that bidders are treated equally or

equitably. The metric for fairness is the fairness index, which is a measure of

the dispersion or variation of the utilities or payments of the bidders in the

auction.

Privacy: The auction should ensure that bidders’ types are not revealed or

leaked. The metric for privacy is the privacy loss, which is a measure of the

information gain or leakage of the bidders’ types in the auction.

By defining the criteria and metrics for evaluating the auctions, we can

assess how well the auctions meet our expectations and requirements, as well as

how they impact our stakeholders and society. We can also compare different

auctions and choose or design the best one for our chatbot context.

5.4.3 Step 4.3: Select or design an auction mechanism that satisfies

the objectives, constraints, criteria, and metrics

In this step, we select or design an auction mechanism that satisfies the objec-

tives, constraints, criteria, and metrics that we defined in the previous steps.

The auction mechanism is a function that maps each bidder’s type and each

good’s type and each seller’s type to an outcome of an auction, which consists

of an allocation vector and a payment vector.

We draw on Border’s paper as a launching pad for selecting or designing

an auction mechanism from the reduced forms that we learned in the previous

step. Border’s paper shows how to construct an incentive compatible direct

auction from a given reduced form, using geometric methods and the theorem

of the alternative. However, Border’s paper does not address other properties or

criteria that may be important for the chatbot context, such as efficiency, rev-

enue, fairness, or privacy. Therefore, we need to extend and generalize Border’s

framework to incorporate these aspects.
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We use the following sub-steps to select or design an auction mechanism:

Step 4.3.1: Choose a type of auction mechanism, such as direct, indirect,

sequential, random sampling, or robust.

Step 4.3.2: Choose a bidding rule or format, such as sealed-bid, open-bid,

first-price, second-price, or all-pay.

Step 4.3.3: Choose an allocation rule or function, such as deterministic,

probabilistic, uniform, discriminatory, or optimal.

Step 4.3.4: Choose a payment rule or function, such as fixed, variable, linear,

nonlinear, or optimal.

We describe each step in detail in the following subsections.

Step 4.3.1: Choose a type of auction mechanism.

In this step, we choose a type of auction mechanism that suits our chatbot

context and satisfies our objectives, constraints, criteria, and metrics. The type

of auction mechanism determines the structure and format of the auction, such

as how bidders submit their bids, how the auctioneer allocates the goods, and

how the auctioneer determines the payments.

We use Border’s paper as a starting point for choosing a type of auction

mechanism from the reduced forms that we learned in the previous step. A

direct auction is a type of auction mechanism where bidders report their types

directly to the auctioneer, who then allocates the goods and determines the

payments based on the reported types.

However, a direct auction may not be the best choice for our chatbot context,

for several reasons:

A direct auction may not be efficient or revenue optimal, as it may not allo-

cate the goods to the bidders who value them the most or extract the maximum

possible revenue from the bidders.

A direct auction may not be fair or private, as it may discriminate or leak
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information about the bidders based on their reported types.

A direct auction may not be practical or user-friendly, as it may require

bidders to report their types in a complex or unnatural way, such as using

numbers or vectors.

Therefore, we need to consider other types of auction mechanisms that may

be more suitable for our chatbot context. Some possible types of auction mech-

anisms are:

Indirect auction: An indirect auction is a type of auction mechanism where

bidders submit bids that are not necessarily equal to their types, and the auc-

tioneer allocates the goods and determines the payments based on the bids. An

indirect auction can be more efficient or revenue optimal than a direct auction,

as it can induce bidders to bid more aggressively or truthfully. An indirect auc-

tion can also be more fair or private than a direct auction, as it can protect or

hide bidders’ types from the auctioneer or other bidders.

Sequential auction: A sequential auction is a type of auction mechanism

where bidders submit bids in multiple rounds, and the auctioneer allocates the

goods and determines the payments in each round based on the bids. A sequen-

tial auction can be more efficient or revenue optimal than a direct or indirect

auction, as it can incorporate new information or feedback that is revealed over

time. A sequential auction can also be more fair or private than a direct or

indirect auction, as it can allow bidders to adjust or withdraw their bids in

response to market conditions or bidder behaviors.

Random sampling auction: A random sampling auction is a type of auction

mechanism where bidders are randomly selected to participate in the auction,

and the auctioneer allocates the goods and determines the payments based on

the selected bidders’ types or bids. A random sampling auction can be more

efficient or revenue optimal than a direct, indirect, or sequential auction, as it
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can reduce competition or collusion among bidders. A random sampling auction

can also be more fair or private than a direct, indirect, or sequential auction, as

it can ensure equal or equitable chances of winning for all bidders.

Robust auction: A robust auction is a type of auction mechanism where

bidders have incomplete information about the distribution of bidder types or

good types, and the auctioneer allocates the goods and determines the payments

based on the worst-case scenario. A robust auction can be more efficient or

revenue optimal than a direct, indirect, sequential, or random sampling auction,

as it can handle uncertainty or ambiguity in the market. A robust auction

can also be more fair or private than a direct, indirect, sequential, or random

sampling auction, as it can prevent manipulation or exploitation by the bidders

or the seller.

To choose a type of auction mechanism that best fits our chatbot context

and satisfies our objectives, constraints, criteria, and metrics, we need to com-

pare and contrast these types of auction mechanisms based on their advantages

and disadvantages, as well as their applicability and feasibility for our chatbot

context. We will do this in the next subsection.

Step 4.3.2: Choose a bidding rule or format, such as sealed-bid,

open-bid, first-price, second-price, or all-pay.

In this step, we choose a bidding rule or format that suits our chatbot context

and satisfies our objectives, constraints, criteria, and metrics. The bidding rule

or format determines how bidders express their preferences or values for the

goods, such as using numbers, words, or gestures.

We use Border’s paper as a starting point for choosing a bidding rule or

format from the reduced forms that we learned in the previous step. Border’s

paper shows how to construct an incentive compatible direct auction from a

given reduced form, using geometric methods and the theorem of the alternative.
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A direct auction is a type of auction mechanism where bidders report their

types directly to the auctioneer, who then allocates the goods and determines

the payments based on the reported types.

However, a direct auction may not be the best choice for our chatbot context:

A direct auction may not be efficient or revenue optimal, as it may not allo-

cate the goods to the bidders who value them the most or extract the maximum

possible revenue from the bidders.

A direct auction may not be fair or private, as it may discriminate or leak

information about the bidders based on their reported types.

A direct auction may not be practical or user-friendly, as it may require

bidders to report their types in a complex or unnatural way, such as using

numbers or vectors.

Therefore, we need to consider other bidding rules or formats that may be

more suitable for our chatbot context. Some possible bidding rules or formats

are:

Sealed-bid: A sealed-bid is a bidding rule or format where bidders submit

their bids privately and simultaneously to the auctioneer, who then allocates

the goods and determines the payments based on the bids. A sealed-bid can be

more efficient or revenue optimal than a direct auction, as it can induce bidders

to bid more aggressively or truthfully. A sealed-bid can also be more fair or

private than a direct auction, as it can protect or hide bidders’ bids from the

auctioneer or other bidders.

Open-bid: An open-bid is a bidding rule or format where bidders submit

their bids publicly and sequentially to the auctioneer, who then allocates the

goods and determines the payments based on the bids. An open-bid can be

more efficient or revenue optimal than a direct or sealed-bid auction, as it can

incorporate new information or feedback that is revealed over time. An open-
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bid can also be more fair or private than a direct or sealed-bid auction, as it can

allow bidders to adjust or withdraw their bids in response to market conditions

or bidder behaviors.

First-price: A first-price is a bidding rule or format where bidders pay their

bids if they win the goods. A first-price can be more efficient or revenue optimal

than a direct, sealed-bid, or open-bid auction, as it can reduce competition or

collusion among bidders. A first-price can also be more fair or private than

a direct, sealed-bid, or open-bid auction, as it can ensure equal or equitable

payments for all winners.

Second-price: A second-price is a bidding rule or format where bidders pay

the second-highest bid if they win the goods. A second-price can be more

efficient or revenue optimal than a direct, sealed-bid, open-bid, or first-price

auction, as it can elicit truthful bidding from bidders. A second-price can also

be more fair or private than a direct, sealed-bid, open-bid, or first-price auction,

as it can prevent overbidding or underbidding by bidders.

All-pay: An all-pay is a bidding rule or format where bidders pay their bids

regardless of whether they win the goods. An all-pay can be more efficient or

revenue optimal than a direct, sealed-bid, open-bid, first-price, or second-price

auction, as it can extract the maximum possible revenue from the bidders. An

all-pay can also be more fair or private than a direct, sealed-bid, open-bid,

first-price, or second-price auction, as it can eliminate the winner’s curse or the

loser’s regret.

To choose a bidding rule or format that best fits our chatbot context and

satisfies our objectives, constraints, criteria, and metrics, we need to compare

and contrast these bidding rules or formats based on their advantages and dis-

advantages, as well as their applicability and feasibility for our chatbot context:

Step 4.3.3: Choose an allocation rule or function, such as deter-
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ministic, probabilistic, uniform, discriminatory, or optimal.

In this step, we choose an allocation rule or function that suits our chatbot

context and satisfies our objectives, constraints, criteria, and metrics. The

allocation rule or function determines how the auctioneer allocates the goods to

the bidders based on their types or bids.

We use Border’s paper as a starting point for choosing an allocation rule or

function from the reduced forms that we learned in the previous step. Border’s

paper shows how to construct an incentive compatible direct auction from a

given reduced form, using geometric methods and the theorem of the alternative.

A direct auction is a type of auction mechanism where bidders report their

types directly to the auctioneer, who then allocates the goods and determines

the payments based on the reported types.

However, a direct auction may not be the best choice for our chatbot context,

for several reasons:

A direct auction may not be efficient or revenue optimal, as it may not allo-

cate the goods to the bidders who value them the most or extract the maximum

possible revenue from the bidders.

A direct auction may not be fair or private, as it may discriminate or leak

information about the bidders based on their reported types.

A direct auction may not be practical or user-friendly, as it may require

bidders to report their types in a complex or unnatural way, such as using

numbers or vectors.

Therefore, we need to consider other allocation rules or functions that may

be more suitable for our chatbot context. Some possible allocation rules or

functions are:

Deterministic: A deterministic allocation rule or function is an allocation

rule or function that assigns each good to one and only one bidder with certainty.
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A deterministic allocation rule or function can be more efficient or revenue

optimal than a direct auction, as it can allocate the goods to the bidders who

have the highest types or bids. A deterministic allocation rule or function can

also be more fair or private than a direct auction, as it can ensure equal or

equitable chances of winning for all bidders.

Probabilistic: A probabilistic allocation rule or function is an allocation

rule or function that assigns each good to one and only one bidder with some

probability. A probabilistic allocation rule or function can be more efficient or

revenue optimal than a direct or deterministic auction, as it can incorporate

uncertainty or risk preferences of the bidders. A probabilistic allocation rule or

function can also be more fair or private than a direct or deterministic auction,

as it can prevent domination or manipulation by the bidders.

Uniform: A uniform allocation rule or function is an allocation rule or func-

tion that assigns each good to one and only one bidder with equal probability.

A uniform allocation rule or function can be more efficient or revenue optimal

than a direct, deterministic, or probabilistic auction, as it can reduce compe-

tition or collusion among the bidders. A uniform allocation rule or function

can also be more fair or private than a direct, deterministic, or probabilistic

auction, as it can ensure equal or equitable chances of winning for all bidders.

- Discriminatory: A discriminatory allocation rule or function is an allocation

rule or function that assigns each good to one and only one bidder with different

probabilities depending on their types or bids. A discriminatory allocation rule

or function can be more efficient or revenue optimal than a direct, deterministic,

probabilistic, or uniform auction, as it can elicit truthful or aggressive bidding

from the bidders. A discriminatory allocation rule or function can also be more

fair or private than a direct, deterministic, probabilistic, or uniform auction,

as it can protect or hide bidders’ types or bids from the auctioneer or other
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bidders. - Optimal: An optimal allocation rule or function is an allocation rule

or function that assigns each good to one and only one bidder that maximizes

some objective function of the seller, the bidders, and the user. An optimal allo-

cation rule or function can be more efficient or revenue optimal than any other

type of allocation rule or function, as it can achieve the best possible outcome

for everyone involved in the auction. An optimal allocation rule or function can

also be more fair or private than any other type of allocation rule or function,

as it can satisfy any constraint or criterion that applies to the auction.

To choose an allocation rule or function that best fits our chatbot context

and satisfies our objectives, constraints, criteria, and metrics, we need to com-

pare and contrast these allocation rules or functions based on their advantages

and disadvantages, as well as their applicability and feasibility for our chatbot

context. We will do this in the next subsection.

Step 4.3.4: Choose a payment rule or function, such as fixed, vari-

able, linear, nonlinear, or optimal.

In this step, we choose a payment rule or function that suits our chatbot

context and satisfies our objectives, constraints, criteria, and metrics. The pay-

ment rule or function determines how the auctioneer determines the payments

for the goods based on the bidder types or bids.

We use Border’s paper as a starting point for choosing a payment rule or

function from the reduced forms that we learned in the previous step. Border’s

paper shows how to construct an incentive compatible direct auction from a

given reduced form, using geometric methods and the theorem of the alternative.

A direct auction is a type of auction mechanism where bidders report their

types directly to the auctioneer, who then allocates the goods and determines

the payments based on the reported types.

Some possible payment rules or functions are:

32



Fixed: A fixed payment rule or function is a payment rule or function that

charges each bidder a fixed amount for each good, regardless of their types or

bids. A fixed payment rule or function can be more efficient or revenue optimal

than a direct auction, as it can induce bidders to bid more aggressively or

truthfully. A fixed payment rule or function can also be more fair or private than

a direct auction, as it can ensure equal or equitable payments for all bidders.

Variable: A variable payment rule or function is a payment rule or function

that charges each bidder a variable amount for each good, depending on their

types or bids. A variable payment rule or function can be more efficient or

revenue optimal than a direct or fixed auction, as it can incorporate uncertainty

or risk preferences of the bidders. A variable payment rule or function can

also be more fair or private than a direct or fixed auction, as it can prevent

overbidding or underbidding by bidders.

Linear: A linear payment rule or function is a payment rule or function that

charges each bidder a linear function of their types or bids for each good. A

linear payment rule or function can be more efficient or revenue optimal than

a direct, fixed, or variable auction, as it can reduce competition or collusion

among the bidders. A linear payment rule or function can also be more fair or

private than a direct, fixed, or variable auction, as it can ensure proportional or

equitable payments for all bidders.

Nonlinear: A nonlinear payment rule or function is a payment rule or func-

tion that charges each bidder a nonlinear function of their types or bids for each

good. A nonlinear payment rule or function can be more efficient or revenue

optimal than any other type of payment rule or function, as it can elicit truthful

or aggressive bidding from the bidders. A nonlinear payment rule or function

can also be more fair or private than any other type of payment rule or function,

as it can satisfy any constraint or criterion that applies to the auction.

33



Optimal: An optimal payment rule or function is a payment rule or function

that charges each bidder an amount that maximizes some objective function

of the seller, the bidders, and the user. An optimal payment rule or function

can be more efficient or revenue optimal than any other type of payment rule

or function, as it can achieve the best possible outcome for everyone involved

in the auction. An optimal payment rule or function can also be more fair or

private than any other type of payment rule or function, as it can satisfy any

constraint or criterion that applies to the auction.

To choose a payment rule or function that best fits our chatbot context and

satisfies our objectives, constraints, criteria, and metrics, we need to compare

and contrast these payment rules or functions based on their advantages and dis-

advantages, as well as their applicability and feasibility for our chatbot context.

We will do this in the next subsection.

5.4.4 Step 4.4: Test and refine the auction mechanism using simu-

lations or experiments.

In this step, we test and refine the auction mechanism that we selected or

designed in the previous step. The auction mechanism is a function that maps

each bidder’s type and each good’s type and each seller’s type to an outcome of

an auction, which consists of an allocation vector and a payment vector.

We use simulations or experiments to test and refine the auction mechanism

based on the data or models that we use in our framework. The simulations

or experiments can help us to evaluate the performance and robustness of the

auction mechanism according to the objectives, constraints, criteria, and metrics

that we defined in the previous steps. The simulations or experiments can also

help us to identify and resolve any potential issues or problems that may arise

in the auction mechanism, such as inefficiency, revenue loss, unfairness, privacy

breach, etc.
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We use the following steps to test and refine the auction mechanism using

simulations or experiments:

Step 4.4.1: Set up the simulation or experiment environment, such as the

number of bidders, the number of goods, the distribution of bidder types, the

distribution of good types, the type of seller, etc.

Step 4.4.2: Run the simulation or experiment using the auction mechanism

that we selected or designed in the previous step, and collect the data or results,

such as the allocation vector, the payment vector, the bidder utilities, the user

value, the seller revenue, etc.

Step 4.4.3: Analyze the data or results using the criteria and metrics that we

defined in the previous steps, such as incentive compatibility, efficiency, revenue

optimality, fairness, privacy, etc.

Step 4.4.4: Compare and contrast the data or results with other types of

auction mechanisms or with theoretical benchmarks or optimal solutions.

Step 4.4.5: Identify and resolve any issues or problems that may arise in

the auction mechanism, such as inefficiency, revenue loss, unfairness, privacy

breach, etc., by modifying or improving the auction mechanism.

We describe each step in detail in the following subsections.

Step 4.4.1: Set up the simulation or experiment environment.

In this step, we set up the simulation or experiment environment that we

use to test and refine the auction mechanism that we selected or designed in

the previous step. The simulation or experiment environment consists of the

parameters and variables that define the market and the auction, such as the

number of bidders, the number of goods, the distribution of bidder types, the

distribution of good types, the type of seller, etc.

The simulation or experiment environment can be set up using various meth-

ods, such as:
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Using simulations: We can use simulations that allow us to model and ana-

lyze chatbots and ad auctions using mathematical or computational tools, such

as Python, R, MATLAB, etc. We can use simulations to specify and control the

parameters and variables of the simulation or experiment environment, such as

the number of bidders, the number of goods, the distribution of bidder types,

the distribution of good types, the type of seller, etc. We can also use simula-

tions to generate data or results from our auction mechanism that we selected

or designed in the previous step.

By setting up the simulation or experiment environment, we can create a

realistic and flexible setting that mimics our chatbot context and satisfies our

objectives, constraints, criteria, and metrics. We can also adjust or modify the

simulation or experiment environment according to our needs and preferences.

Using historical data: We can use historical data from real-world markets or

platforms that involve chatbots and ad auctions, such as Facebook Messenger,

Google Assistant, Amazon Alexa, etc. We can use the historical data to estimate

the parameters and variables of the simulation or experiment environment, such

as the number of bidders, the number of goods, the distribution of bidder types,

the distribution of good types, the type of seller, etc. We can also use the

historical data to validate or calibrate our models and assumptions.

Using online platforms: We can use online platforms that allow us to create

and run chatbots and ad auctions, such as Microsoft Bot Framework, Dialogflow,

Wit.ai, etc. We can use the online platforms to implement and deploy our

auction mechanism that we selected or designed in the previous step. We can

also use the online platforms to collect data or feedback from real or simulated

users and advertisers who interact with our chatbot and participate in our ad

auction.

Step 4.4.2: Run the simulation or experiment using the auction
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mechanism that we selected or designed in the previous step, and

collect the data or results, such as the allocation vector, the payment

vector, the bidder utilities, the user value, the seller revenue, etc.

In this step, we run the simulation or experiment using the auction mecha-

nism that we selected or designed in the previous step. The auction mechanism

is a function that maps each bidder’s type and each good’s type and each seller’s

type to an outcome of an auction, which consists of an allocation vector and a

payment vector.

We use the simulation or experiment environment that we set up in the

previous step to run the auction mechanism. The simulation or experiment

environment consists of the parameters and variables that define the market

and the auction, such as the number of bidders, the number of goods, the

distribution of bidder types, the distribution of good types, the type of seller,

etc.

We may use various methods to run the simulation or experiment using the

auction mechanism, such as historical data4, online platforms5; simulations that

allow us to model and analyze chatbots and ad auctions using mathematical or

computational tools. We can use simulations to specify and control the param-

eters and variables of the market and the auction using our auction mechanism

that we selected or designed in the previous step. We can also use simulations

to generate data or results from our auction mechanism.

By running the simulation or experiment using the auction mechanism, we

4We can use historical data from real-world markets or platforms that involve chatbots
and ad auctions, such as Facebook Messenger, Google Assistant, Amazon Alexa, etc. We
can use the historical data to simulate or replicate the market and the auction using our
auction mechanism that we selected or designed in the previous step. We can also use the
historical data to compare or benchmark our auction mechanism with other types of auction
mechanisms or with theoretical benchmarks or optimal solutions.

5See Microsoft Bot Framework, Dialogflow, Wit.ai, etc. We can use these online platforms
to implement and deploy our auction mechanism that we selected or designed in the previous
step. We can also use the online platforms to collect data or feedback from real or simulated
users and advertisers who interact with our chatbot and participate in our ad auction.
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can observe and record the data or results, such as the allocation vector, the

payment vector, the bidder utilities, the user value, the seller revenue, etc. We

can also analyze and evaluate the data or results using the criteria and metrics

that we defined in the previous steps, such as incentive compatibility, efficiency,

revenue optimality, fairness, privacy, etc. We will do this in the next subsection.

Step 4.4.3: Analyze the data or results using the criteria and met-

rics that we defined in the previous steps, such as incentive compati-

bility, efficiency, revenue optimality, fairness, privacy, etc.

In this step, we analyze the data or results that we obtained from running

the simulation or experiment using the auction mechanism that we selected or

designed in the previous step. The data or results consist of the allocation vector,

the payment vector, the bidder utilities, the user value, the seller revenue, etc.

We use the criteria and metrics that we defined in the previous steps to

analyze the data or results. The criteria are the properties or characteristics that

we want the auctions to have, such as incentive compatibility, efficiency, revenue

optimality, fairness, or privacy. The metrics are the quantitative measures that

we use to evaluate the auctions based on the criteria, such as truthfulness ratio,

allocative efficiency, revenue ratio, fairness index, or privacy loss.

We use various methods to analyze the data or results using the criteria and

metrics, such as:

Using descriptive statistics: We can use descriptive statistics to summarize

and display the data or results using measures of central tendency, dispersion,

or distribution.

Using inferential statistics: We can use inferential statistics to test and com-

pare the data or results using hypothesis testing, confidence intervals, or signif-

icance tests.

Using machine learning: We can use machine learning to model and pre-
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dict the data or results using supervised learning, unsupervised learning, or

reinforcement learning.

By analyzing the data or results using the criteria and metrics, we can mea-

sure how well the auction mechanism achieves the objectives and satisfies the

constraints of the seller, as well as how it affects the bidders and the user. We

can also identify and resolve any issues or problems that may arise in the auc-

tion mechanism, such as inefficiency, revenue loss, unfairness, privacy breach,

etc. We will do this in the next subsection.

Step 4.4.4: Compare and contrast the data or results with other

types of auction mechanisms or with theoretical benchmarks or opti-

mal solutions.

In this step, we compare and contrast the data or results that we obtained

from running the simulation or experiment using the auction mechanism that

we selected or designed in the previous step. The data or results consist of the

allocation vector, the payment vector, the bidder utilities, the user value, the

seller revenue, etc.

We use other types of auction mechanisms or theoretical benchmarks or op-

timal solutions to compare and contrast the data or results. The other types of

auction mechanisms are alternative ways of allocating the goods and determin-

ing the payments based on the bidder types or bids. The theoretical benchmarks

or optimal solutions are ideal or best possible outcomes of the auction based on

some objective function or criterion.

We use various methods to compare and contrast the data or results with

other types of auction mechanisms or theoretical benchmarks or optimal solu-

tions, such as:

Using graphical methods: We can use graphical methods to visualize and

compare the data or results using charts, graphs, plots, etc. For example, we

39



can use bar charts, line graphs, scatter plots, etc. to visualize and compare the

data or results.

Using numerical methods: We can use numerical methods to quantify and

compare the data or results using measures, indices, scores, etc. For example,

we can use mean difference, standard deviation ratio, correlation coefficient, etc.

to quantify and compare the data or results.

Using analytical methods: We can use analytical methods to explain and

compare the data or results using logic, reasoning, arguments, etc. For example,

we can use causality analysis, sensitivity analysis, counterfactual analysis, etc.

to explain and compare the data or results.

By comparing and contrasting the data or results with other types of auction

mechanisms or theoretical benchmarks or optimal solutions, we can assess how

well the auction mechanism performs and how it differs from other possible

options or expectations. We can also identify and resolve any issues or problems

that may arise in the auction mechanism, such as inefficiency, revenue loss,

unfairness, privacy breach, etc. We will do this in the next subsection.

Step 4.4.5: Identify and resolve any issues or problems that may

arise in the auction mechanism, such as inefficiency, revenue loss, un-

fairness, privacy breach, etc., by modifying or improving the auction

mechanism.

In this step, we identify and resolve any issues or problems that may arise in

the auction mechanism that we selected or designed in the previous step. The

auction mechanism is a function that maps each bidder’s type and each good’s

type and each seller’s type to an outcome of an auction, which consists of an

allocation vector and a payment vector.

We use the data or results that we obtained from running the simulation

or experiment using the auction mechanism in the previous step to identify
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and resolve any issues or problems. The data or results consist of the allocation

vector, the payment vector, the bidder utilities, the user value, the seller revenue,

etc.

We use the criteria and metrics that we defined in the previous steps to

identify and resolve any issues or problems. The criteria are the properties or

characteristics that we want the auctions to have, such as incentive compati-

bility, efficiency, revenue optimality, fairness, or privacy. The metrics are the

quantitative measures that we use to evaluate the auctions based on the criteria,

such as truthfulness ratio, allocative efficiency, revenue ratio, fairness index, or

privacy loss.

We use various methods to identify and resolve any issues or problems in

the auction mechanism, such as:

We can use diagnostic methods to detect and diagnose any issues or problems

in the auction mechanism using tests, checks, or indicators. For example, we can

use error analysis, anomaly detection, performance monitoring, etc. to detect

and diagnose any issues or problems in the auction mechanism.

We can use corrective methods to fix and solve any issues or problems in

the auction mechanism using adjustments, modifications, or improvements. For

example, we can use parameter tuning, algorithm optimization, mechanism re-

design, etc. to fix and solve any issues or problems in the auction mechanism

We can use preventive methods to avoid and prevent any issues or prob-

lems in the auction mechanism using safeguards, constraints, or incentives. For

example, we can use verification, validation, certification, etc. to avoid and

prevent any issues or problems in the auction mechanism.

By identifying and resolving any issues or problems in the auction mecha-

nism, we can improve the performance and robustness of the auction mechanism

according to the objectives, constraints, criteria, and metrics that we defined in
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the previous steps. We can also ensure that the auction mechanism meets our

expectations and requirements, as well as how it impacts our stakeholders and

society.

6 Simulated Examples

We conducted simulations using auction mechanisms, bidding rules, allocation

rules, and payment rules. We compared and contrasted the performance and

robustness of the auction mechanisms according to the objectives, constraints,

criteria, and metrics that we defined in Section 4. We also collected data and

feedback from real or simulated users and advertisers who interacted with our

chatbot and participated in our ad auction.

We can now describe the simulation or experiment environment that we

might use to test and refine the auction mechanisms that we selected or designed

in Section 4. We specify the parameters and variables that define the market

and the auction, such as the number of bidders, the number of goods, the

distribution of bidder types, the distribution of good types, the type of seller,

etc.

We present the data or results that we obtained from running the simulation

or experiment using the auction mechanisms that we selected or designed in Sec-

tion 4. We show the allocation vector, the payment vector, the bidder utilities,

the user value, the seller revenue, etc. for each type of auction mechanism.

We analyze the data or results using the criteria and metrics that we defined

in Section 4, such as incentive compatibility, efficiency, revenue optimality, fair-

ness, privacy, etc. We measure how well the auction mechanisms achieve the

objectives and satisfy the constraints of the seller, as well as how they affect the

bidders and the user.

We compare and contrast the data or results with other types of auction
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mechanisms or with theoretical benchmarks or optimal solutions. We assess how

well the auction mechanisms perform and how they differ from other possible

options or expectations.

We identify and resolve any issues or problems that may arise in the auction

mechanisms, such as inefficiency, revenue loss, unfairness, privacy breach, etc.,

by modifying or improving the auction mechanisms.

6.1 Simulated examples

The example is a relatively simple implementation of a simulation for the auction

mechanism discussed, with 5 bidders, 3 goods and 1000 simulations. It simu-

lates the process of conducting second-price sealed-bid auctions with a given

number of bidders and goods. The purpose of this simulation is to observe

how the auction mechanism performs, analyze the results, and draw conclu-

sions about bidder payments in the context of an AI chatbot. The figure simu-

lates the second-price sealed-bid auction mechanism with the specified param-

eters, collects data from multiple simulations, calculates statistics, visualizes

the results, and provides insights into bidder payments. From the provided

mean bidder payments, respectively [7.991070022419167, 7.931851196960486,

7.960632023326408, 7.988632139684694, 7.945248285212021, we can draw sev-

eral conclusions:

1. Similarity of Payments. The mean payments for all bidders are relatively

close, with differences of only a fraction of a unit (e.g., less than 0.1). This

suggests that the auction mechanism is distributing goods and determining

payments in a balanced manner across all bidders.

2. Efficiency in Allocation. The consistent and similar mean payments im-

ply that the auction mechanism is efficiently allocating goods to bidders.
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Figure 1: Comparison of Bidder Payments: Evaluation of Second-Price Auction
Mechanism for AI Chatbot Ad Slots

Bidders seem to be paying amounts that correspond closely to their valu-

ations, which is a desirable property of an auction mechanism.

3. Consistency of Auction Outcomes. The narrow range of mean payments

across bidders indicates that the auction mechanism is producing consis-

tent outcomes over multiple simulations. This stability in outcomes could

indicate the reliability and predictability of the auction process.

4. Low Variability. The small standard deviations implied by the mean pay-

ments suggest that the spread of payments around the mean is relatively

tight. This indicates that there’s low variability or dispersion in the pay-

ments among bidders, reinforcing the efficiency and fairness of the auction

mechanism.

5. Potential Fairness. The relatively equal mean payments among bidders

suggest a level of fairness in the auction process. Bidders are not fac-

ing significantly different payment outcomes, indicating that the auction

mechanism is treating bidders fairly.
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6. Lack of Bidder Competition Impact. In this example, bidder competition

doesn’t seem to be significantly affecting payments. All bidders are paying

similar amounts, which might suggest that competitive bidding strategies

are not strongly influencing outcomes.

It’s important to note that these conclusions are based on the specific data

generated by the simulation and the auction mechanism used. The interpre-

tation could change with different auction mechanisms, simulation parameters,

or real-world scenarios. Additionally, further analyses, such as comparing these

results with other auction mechanisms or using more sophisticated statistical

techniques, could provide deeper insights.

We discuss the next illustration, which focuses on a first-price open-bid auc-

tion mechanism. The rest of the code remains largely the same as before. Figure

2 shows average bidder payments with error bars to indicate variability. From

the provided mean bidder payments6, we can draw several conclusions:

First, there is variability in payments. The relatively high standard devi-

ations indicate that there is significant variability in bidder payments. This

suggests that the first-price open-bid auction mechanism is producing a wide

range of payment outcomes for bidders.

Secondly, there are differences in average payments. The differences in mean

payments among bidders (e.g., 4.847 to 5.201) indicate that bidders are paying

varying amounts for the ad slots. This suggests that bidders’ valuations or

bidding strategies are influencing their payments.

Third, we note the impact of bidding strategies. The range of payments and

varying standard deviations may suggest that bidders are using different bid-

ding strategies. Some bidders might be bidding aggressively, leading to higher

6The simulated mean payments: 4.920826745322598, 5.201779277090055,
4.898285006672261, 4.847806931636107, 5.016130560775795 and standard deviations
are 2.93628170010383, 2.858529860902223, 2.838528854741667, 2.9491216116977936,
2.8844674126897036 respectively).
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payments, while others might be more conservative in their bids.

Fourth, there is potential for inefficiency. The spread of payments suggests

that the auction might not be as efficient in allocating ad slots to bidders as

desired. Some bidders might be overpaying relative to their actual valuations.

There is also a lack of uniformity. The unequal mean payments indicate that

the auction mechanism isn’t resulting in a uniform distribution of payments

among bidders. Some bidders are benefiting more than others.

Finally, we observe a high variability in payments could lead to revenue

uncertainty for the seller. The revenue generated from the auction might vary

significantly across different auctions due to the diversity of bidding strategies

and bidder valuations.

Again, we stress that these conclusions are based on the specific and very

simplified data generated by the simulation and the auction mechanism used.

Figure 2: Comparison of Bidder Payments with Error Bars: Evaluation of First-
Price Auction Mechanism for AI Chatbot Ad Slots
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7 User interface design issues

We briefly discuss some user interface design issues that are relevant for our

framework for auction design for AI chatbots. We consider how the user inter-

face can affect the user experience and the auction outcomes, as well as how

we can design the user interface to enhance the user satisfaction and the seller

revenue. Some possible interfaces that could significantly improve modern AI

chatbots when it comes to advertising from an auction perspective are:

Interactive banners. Instead of having ads as footnotes in chat responses,

the chatbot could display interactive banners at the top or bottom of the chat

window, where the advertisers could showcase their products or services in a

more engaging way. For example, the banners could have animations, videos,

quizzes, games, or surveys that could attract the users’ attention and interest.

The chatbot could use auctions to allocate the banner space to the highest

bidder among the advertisers, and charge them based on the number of clicks

or impressions.

Personalized recommendations. The chatbot could use its knowledge

of the user’s preferences, needs, and goals to provide personalized recommenda-

tions of relevant products or services that could enhance the user’s experience or

satisfaction. For example, if the user is chatting with the chatbot about travel

plans, the chatbot could suggest some hotels, flights, or attractions that match

the user’s budget, schedule, and interests. The chatbot could use auctions to

select the best recommendation among the advertisers, and charge them based

on the user’s feedback or conversion rate.

Sponsored content. The chatbot could integrate sponsored content into

its chat responses, where the advertisers could offer useful information, tips,

or advice that relate to the user’s query or topic. For example, if the user is

chatting with the chatbot about health issues, the chatbot could include some

47



sponsored content from a medical provider or a pharmaceutical company that

could answer the user’s questions or concerns. The chatbot could use auctions to

determine which sponsored content to include in its chat responses, and charge

them based on the user’s engagement or satisfaction.

We conclude and summarize our main contributions and implications in

Section 7.

8 Conclusion

In this paper, we proposed a novel framework for auction design for AI chatbots,

where we used deep reinforcement learning (DRL) and transformer language

models (TLMs) to learn the bidder types, the good types, and the reduced

forms from the bidding data and the conversational data. We then used market

design and mechanism design principles to create and improve the ad markets

and institutions for chatbots, where we extended and generalized Border’s pa-

per to incorporate various objectives, constraints, criteria, and metrics. We also

discussed some user interface design issues that are relevant for our framework,

such as interactive, adaptive, or personalized interfaces. We conducted several

simulations and experiments using different types of auction mechanisms, bid-

ding rules, allocation rules, and payment rules. We compared and contrasted

the performance and robustness of the auction mechanisms according to the

objectives, constraints, criteria, and metrics that we defined in Section 4. We

also collected data and feedback from real or simulated users and advertisers

who interacted with our chatbot and participated in our ad auction.

We showed that our framework can enhance Border’s paper by using modern

economic auction and/or newer mathematical tools for the AI chatbot context.

We also showed that our framework can handle different market conditions and

bidder interactions, such as competition, collusion, or entry and exit. We also
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showed that our framework can balance exploration and exploitation, meaning

that we can try new auction mechanisms to discover better outcomes, while also

exploiting the current best auction mechanism to maximize our utility.

We believe that our framework can contribute to the literature on auction

design for AI chatbots, as well as to the practice of chatbot development and

deployment. We hope that our framework can inspire more research and inno-

vation in this emerging and exciting field.
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10 Appendix A: Additional Details of the Algo-

rithm for Auction Design for AI Chatbots

In this appendix, we provide additiional details of the algorithm that we designed

for auction design for AI chatbots.

In the first step of learning bidder types using DRL, we use DRL methods

to learn the bidder types from the bidding data. The bidding data consists of

the bids submitted by the bidders for the ad slots, as well as the outcomes of

the auctions, such as the allocation and the payment. The bidding data can be

obtained from historical records, online platforms, or simulations.

We model the bidding problem as a Markov decision process (MDP), where

each bidder is an agent that interacts with an environment. The environment

consists of the chatbot, the user, the ad slots, and the other bidders. The agent’s

state is its type, which is a vector of parameters that describe its preferences

and objectives. The agent’s action is its bid, which is a vector of values that

specify how much it is willing to pay for each ad slot. The agent’s reward is its

utility, which is the difference between its value and its payment for the ad slot

that it wins.
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We use DRL methods to learn a policy function that maps each state to a

probability distribution over actions. The policy function represents the bidding

strategy of the agent, which determines how it should bid in each situation. The

policy function is parameterized by a neural network, which can be trained using

various algorithms, such as Q-learning, policy gradient, or actor-critic.

The objective of the agent is to maximize its expected cumulative reward

over time, which can be expressed as:

max
θ

Eπθ
[

T∑
t=0

γtrt(xt, ωt, τt)]

where θ are the neural network parameters, πθ is the policy function, T is

the time horizon, γ is the discount factor, rt is the reward function, xt is the

state at time t, ωt is the allocation at time t, and τt is the payment at time t.

The approach here is from Lou et al (2018), which introduces a novel al-

gorithmic framework for designing and analyzing model-based RL algorithms

with theoretical guarantees. It provides upper bounds on the performance loss

and the sample complexity of the proposed algorithms, as well as lower bounds

on the hardness of the problem.

The main results and implications of this approach are:

Model-based RL algorithms can achieve near-optimal performance with poly-

nomial sample complexity under mild assumptions on the MDP model, the

policy class, and the reward function.

Such model-based RL algorithms are minimax optimal up to logarithmic

factors under some conditions on the MDP model, the policy class, and the

reward function.

The general framework can accommodate various types of MDPmodels, such

as deterministic, stochastic, episodic, or continuing, as well as various types of

policy classes, such as linear, nonlinear, or deep neural networks.
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It also provides a modular approach that can combine different components

of model-based RL algorithms, such as planning, learning, exploration, or reg-

ularization.

The implication of this paper for our algorithm is that it can help us to

design and analyze our model-based RL methods for learning bidder types with

theoretical guarantees. We can use the framework and the results of this paper

to choose the appropriate MDP model, policy class, and reward function for

our bidding problem, as well as to select or design the best planning, learning,

exploration, and regularization methods for our DRL methods. We can also

use the upper bounds and lower bounds provided by this paper to evaluate the

performance and robustness of our DRL methods, as well as to compare them

with other types of RL methods or with theoretical benchmarks or optimal

solutions.

We can also use the upper bounds and lower bounds provided by this paper

to evaluate the performance and robustness of our DRL methods, as well as to

compare them with other types of RL methods or with theoretical benchmarks

or optimal solutions. For example, we can use the following formulas to calculate

the performance loss and the sample complexity of our DRL methods:

∆(θ) = max
x∈X

Eπ∗ [

T∑
t=0

γtrt(xt, ωt, τt)]− Eπθ
[

T∑
t=0

γtrt(xt, ωt, τt)]

N(θ) =
C1

ϵ2
(log |X |+ log |A|+ log T + log(1/δ)) + C2T |X ||A|

where ∆(θ) is the performance loss, N(θ) is the sample complexity, ϵ is the

error tolerance, δ is the confidence level, C1 and C2 are constants that depend

on the MDP model, the policy class, and the reward function.

We can then compare these values with the lower bounds provided by this
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paper, which are:

∆∗ = Ω(

√
T |X ||A|

N
)

N∗ = Ω(
T |X ||A|

∆2
)

where ∆∗ is the optimal performance loss, N∗ is the optimal sample com-

plexity.

By comparing these values, we can see how close our DRL methods are to

the optimal solutions, and how much room for improvement there is. We can

also compare these values with other types of RL methods, such as model-free

RL or policy search RL, and see how they differ in terms of performance and

robustness. This can help us to choose or design the best DRL methods for our

bidding problem.

We can also compare these values with other types of RL methods, such

as model-free RL or policy search RL, and see how they differ in terms of

performance and robustness. This can help us to choose or design the best

DRL methods for our bidding problem.

Model-free RL methods are RL methods that do not use a model of the

environment, but learn directly from the observed data. Model-free RL methods

can be more data-efficient or scalable than model-based RL methods, as they do

not need to estimate or update the model parameters. Model-free RL methods

can also be more flexible or adaptable than model-based RL methods, as they

can handle non-stationary or dynamic environments. However, model-free RL

methods can also be less accurate or reliable than model-based RL methods, as

they may suffer from high variance or bias in the data. Model-free RL methods

can also be less interpretable or explainable than model-based RL methods, as
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they may not provide a clear understanding of the underlying mechanisms or

causes of the behavior.

Policy search RL methods are RL methods that directly optimize the policy

function without using a value function. Policy search RL methods can be more

efficient or effective than value-based RL methods, as they do not need to solve

the Bellman equation or deal with the curse of dimensionality. Policy search RL

methods can also be more expressive or powerful than value-based RL methods,

as they can represent complex or nonlinear policies using neural networks or

other function approximators. However, policy search RL methods can also be

more difficult or challenging than value-based RL methods, as they may face

optimization issues such as local optima, saddle points, or spurious gradients.

Policy search RL methods can also be more sensitive or unstable than value-

based RL methods, as they may require careful tuning of the hyperparameters

such as the learning rate, the exploration rate, or the regularization term.

By comparing these types of RL methods with our DRL methods, we can see

how they differ in terms of performance and robustness for our bidding problem.

We can also see how we can combine or integrate these types of RL methods

with our DRL methods to improve or enhance our algorithm. For example, we

can use model-free RL methods to complement our model-based RL methods

when the model is inaccurate or unreliable. We can also use policy search RL

methods to complement our value-based RL methods when the policy is complex

or nonlinear.

In the next step, we used TLMs to generate good types from the conver-

sational data. The conversational data consists of the natural language input

and output of the user and the chatbot, as well as the features and states of the

conversation. The conversational data can be obtained from historical records,

online platforms, or simulations.
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We model the good generation problem as a natural language generation

(NLG) task, where the input is the conversational data and the output is the

natural language content for the ad slots. The natural language content repre-

sents the good type, which is a vector of parameters that describe the good’s

characteristics and contexts.

We use TLMs to generate natural language content for the ad slots that

matches the features and states of the conversation. The TLMs are neural

network models that can process natural language data using attention mech-

anisms. The TLMs can handle long-range dependencies and parallel computa-

tions better than traditional recurrent or convolutional neural networks. The

TLMs are pre-trained on large-scale unlabeled text data, and can be fine-tuned

for various NLG tasks, such as text completion, text summarization, or dialogue

generation.

The objective of the TLMs is to maximize the likelihood of generating nat-

ural language content that is relevant, coherent, and engaging for the user and

the advertiser. The likelihood can be expressed as:

max
ϕ

Pθϕ [y|x, c, s]

where ϕ are the neural network parameters, θϕ is the TLM function, y is the

natural language content for the ad slot, x is the natural language input of the

user, c is the natural language output of the chatbot, and s is the feature and

state vector of the conversation.

The theoretical analysis of this step is based on Chen et al (2021), which

abstracts reinforcement learning as a sequence modeling problem. It shows that

the proposed framework can achieve state-of-the-art results on several bench-

mark tasks, and provides some theoretical insights on the connection between

reinforcement learning and sequence modeling.
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The main results and implications of this paper are:

Sequence modeling can be used to solve reinforcement learning problems by

using a transformer model to generate optimal actions or trajectories given a

reward function and a context.

The paper also shows that sequence modeling can be used to learn reward

functions from demonstrations or preferences by using a transformer model to

generate optimal rewards or rankings given an action or a trajectory and a

context.

The paper also provides a general framework that can accommodate various

types of reinforcement learning problems, such as discrete or continuous action

spaces, deterministic or stochastic environments, episodic or continuing tasks,

etc.

The paper also yields a modular approach that can combine different compo-

nents of sequence modeling methods, such as pre-training, fine-tuning, sampling,

or ranking.

The implication for our algorithm is that it can help us to design and ana-

lyze our TLM methods for generating good types with theoretical guarantees.

We can use the framework and the results of this paper to choose the appropri-

ate NLG task, transformer model, and reward function for our good generation

problem, as well as to select or design the best pre-training, fine-tuning, sam-

pling, and ranking methods for our TLM methods. We can also use the upper

bounds and lower bounds provided by this paper to evaluate the performance

and robustness of our TLM methods, as well as to compare them with other

types of NLG methods or with theoretical benchmarks or optimal solutions. We

will do this in the next step.

We can also use the upper bounds and lower bounds provided by this paper

to evaluate the performance and robustness of our TLM methods, as well as to
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compare them with other types of NLG methods or with theoretical benchmarks

or optimal solutions. We will do this in the next step.

In the next step, we will use DRL and TLMs to learn and generate reduced

forms from the bidding data and the conversational data. The reduced form is

a function that maps each bidder’s type and each good’s type and each seller’s

type to the probability of winning that good. The reduced form represents the

outcome of the auction, which determines which bidder wins which good and

how much it pays.

We model the reduced form learning problem as a supervised learning task,

where the input is the bidder types, the good types, and the seller type, and the

output is the probability of winning for each bidder-good pair. The probability

of winning represents the reduced form, which is a vector of values that specify

how likely each bidder is to win each good.

We use DRL and TLMs to learn the reduced form from the data. The DRL

methods can capture the complex preferences and behaviors of the bidders, as

well as their adaptation and learning over time. The TLM methods can capture

the complexity and diversity of the ad slots and the chatbot conversations, as

well as provide more relevant and personalized responses. The DRL and TLM

methods can work together to learn a more realistic and flexible reduced form,

which can account for multiple factors and feedback that affect the outcome of

the auction.

The objective of the DRL and TLMmethods is to minimize the error between

the predicted probability of winning and the actual probability of winning, which

can be expressed as:

min
θ,ϕ

Eπθ,θϕ [
∑
i∈N

∑
j∈M

(πθ(xi, yj , z)− π∗(xi, yj , z))
2]

where θ are the DRL parameters, ϕ are the TLM parameters, πθ is the DRL
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function, θϕ is the TLM function, π∗ is the true reduced form, xi is the bidder

type, yj is the good type, and z is the seller type.

The theoretical analysis of this step is based on Chen et al (2022), which

proposes a transformer-based model-based RL agent, called TransDreamer. It

shows that the proposed agent outperforms the Dreamer agent in complex tasks

that require long-range memory access, and provides some theoretical analysis

on the advantages of using transformers for dynamics prediction.

The paper shows that transformers can be used to model complex dynamics

in high-dimensional environments by using attention mechanisms to capture

long-range dependencies and parallel computations.

The paper also shows that transformers can be used to generate realistic

and diverse trajectories in latent space by using generative models to capture

uncertainty and variability in the dynamics.

The paper provides a general framework that can accommodate various types

of model-based RL agents, such as deterministic or stochastic agents, discrete

or continuous action agents, episodic or continuing agents, etc.

The paper also provides a modular approach that can combine different

components of model-based RL agents, such as planning, learning, exploration,

or regularization.

The implication of this paper for our algorithm is that it can help us to

design and analyze our transformer-based model-based RL methods for learning

and generating reduced forms with theoretical guarantees. We can use the

framework and the results of this paper to choose the appropriate transformer

model, generative model, and dynamics model for our reduced form learning

problem, as well as to select or design the best planning, learning, exploration,

and regularization methods for our transformer-based model-based RL methods.

We can also use the upper bounds and lower bounds provided by this paper to
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evaluate the performance and robustness of our transformer-based model-based

RL methods, as well as to compare them with other types of model-based RL

methods or with theoretical benchmarks or optimal solutions. We will do this

in the next step.

We can also use the upper bounds and lower bounds provided by this paper

to evaluate the performance and robustness of our transformer-based model-

based RL methods, as well as to compare them with other types of model-based

RL methods or with theoretical benchmarks or optimal solutions. We will do

this in the next step.

In the next step, we will use market design and mechanism design principles

to create and improve the ad markets and institutions for chatbots. The market

design and mechanism design principles can help us to ensure that the auctions

are incentive compatible, efficient, revenue optimal, fair, and private.

We used the 4.1-4.4 steps to design auctions using market design and mech-

anism design principles.

We then provide a analysis of each step, based on the following objectives,

constraints, criteria, and metrics that we defined in the previous steps: (Ob-

jectives: Maximize revenue, user satisfaction, and social welfare; Constraints:

Privacy, fairness, and quality; Criteria: Incentive compatibility, efficiency, rev-

enue optimality, fairness, and privacy; Metrics: Truthfulness ratio, allocative

efficiency, revenue ratio, fairness index, and privacy loss

We also consider the following factors that affect the performance and ro-

bustness of our auction mechanism:

- Uncertainty or ambiguity in the market - Long-range dependencies or par-

allel computations in the natural language data - Multiple factors or feedback

that affect the outcome of the auction.

The goal of this part is to complement the main text. In this step, we first

60



define the objectives and constraints of the seller that we want to achieve or

satisfy from selling ad slots to advertisers through the chatbot. The objectives

and constraints can be expressed as functions of the seller’s type, the bidder

types, the good types, and the outcome of the auction.

we draw on traditional methods to define objectives and constraints in op-

timization problems, including different types, examples, and methods; to for-

mulate objectives and constraints for ad auctions, including different models,

examples, and methods; to incorporate objectives and constraints into chatbot

design, including different frameworks, examples, and methods.

The implication of these details for our algorithm is that they can help us to

define the objectives and constraints of the seller for our auction design problem.

We can choose the appropriate type, model, and framework for our seller’s

objectives and constraints, as well as to select or design the best method for

solving or analyzing our auction design problem with objectives and constraints.

We will do this in the next step.

In the next step, we define the criteria and metrics for evaluating the auctions

that we design in the previous step. The criteria and metrics can help us to

measure how well the auctions achieve the objectives and satisfy the constraints

of the seller, as well as how they affect the bidders and the users.

The criteria are the properties or characteristics that we want the auctions

to have, such as incentive compatibility, efficiency, revenue optimality, fairness,

or privacy. The criteria can be derived from the objectives and constraints

of the seller, as well as from the ethical or social norms and regulations that

apply to the chatbot. The criteria can be expressed as logical statements or

mathematical expressions that involve the seller’s type, the bidder types, the

good types, and the outcome of the auction.

The metrics are the quantitative measures that we use to evaluate the auc-
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tions based on the criteria. The metrics can be calculated from the data or

simulated from the models that we use in our framework. The metrics can be

expressed as numbers or functions that indicate how well or how poorly the

auctions perform according to the criteria.

We define criteria and metrics for evaluation problems using different types,

such as qualitative, quantitative, formative, or summative. We use different

examples, such as customer satisfaction, user engagement, or social impact, to

illustrate how to define criteria and metrics. We also provide different meth-

ods,such as surveys, interviews, or experiments, to collect and analyze data for

criteria and metrics. We also define criteria and metrics for ad auctions using

different models,such as single-item auctions, multi-item auctions, or combina-

torial auctions. The links also show how to use different examples, such as

incentive compatibility, efficiency, revenue optimality, fairness, or privacy, to

illustrate how to define criteria and metrics. It is also necessary to provide dif-

ferent methods, such as game theory, mechanism design, or market design, to

analyze ad auctions based on criteria and metrics.

It is also necessary to define criteria and metrics for chatbot evaluation using

different frameworks, such as goal-oriented chatbots, task-oriented chatbots, or

conversational chatbots. The links also show how to use different examples,

such as naturalness,coherence,or relevance, to illustrate how to define criteria

and metrics. It is also necessary to provide different methods, such as natural

language processing, machine learning, or reinforcement learning, to evaluate

chatbots based on criteria and metrics.

The implication of these for our algorithm is that they can help us to define

the criteria and metrics for evaluating our auction mechanism for our chatbot

context. We can choose the appropriate type, model, and framework for our

auction mechanism’s criteria and metrics, as well as to select or design the best
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method for collecting and analyzing data based on criteria and metrics.

The rest of the details follow the main text.

11 Appendix B: Guidelines for Chatbot Devel-

opers and Advertisers

We provide some guidelines and best practices for chatbot developers and ad-

vertisers who want to participate in auctions involving AI chatbots.

11.1 For Chatbot Developers

We make the following suggestions:

• Understand Auction Mechanics. Familiarize yourself with different

auction mechanisms (e.g., second-price, first-price) and their implications

on bidder strategies, payments, and efficiency.

• Optimize Bidder Incentives. When designing the auction, consider

mechanisms that encourage truthful bidding to ensure that bidders have

an incentive to reveal their true valuations.

• Implement Transparent Algorithms. When incorporating AI DRL

and TLMs, ensure transparency and explainability of the algorithms. Bid-

ders should understand how their bids are processed and evaluated.

• Monitor User Privacy. When using TLMs for user data analysis, priori-

tize user privacy and data security. Implement appropriate anonymization

techniques to protect user information.

• Provide Clear Rules and Guidelines. Clearly communicate auction

rules, constraints, and objectives to bidders. This includes specifying pay-

ment calculations, bid formats, and auction schedule.
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• Foster Fairness and Diversity. Strive for fairness in allocation and

payment outcomes. Avoid any form of bias or discrimination in the auction

process to the extent possible.

11.2 For Advertisers (Bidders)

For the bidding advertisers, we make these points:

• Analyze Auction Mechanics. Study the auction type being used

(second-price or first-price) to understand its impact on optimal bidding

strategies.

• Estimate Bid Valuations. Estimate bid valuations based on user pref-

erences and potential benefits from ad slots. Leverage data analysis and

TLMs to make informed decisions.

• Implement Strategic Bidding. In first-price auctions, consider strate-

gic bidding that may involve shading bids lower than true valuations to

optimize payment outcomes.

• Diversify Bidding Strategies. Experiment with various bidding strate-

gies during auction simulations to assess their effectiveness under different

scenarios.

• Account for Budget Constraints. Ensure that bidding strategies align

with available budgets. Avoid overcommitting and allocate budgets effec-

tively across multiple auctions.

• Stay Informed and Adaptive. Continuously monitor auction out-

comes, competitor behavior, and market trends. Adapt bidding strategies

based on real-time data.
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• Participate Consistently. Consistent participation across multiple auc-

tions helps you refine bidding strategies and better understand the dynam-

ics of the auction market.

Participating in AI chatbot auctions requires a combination of technical

understanding, strategic thinking, and ethical considerations. We hope that

stakeholders will be able to regularly assess and refine your strategies based on

empirical data and outcomes to the extent possible to achieve optimal results

for both chatbot developers and advertisers.
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