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Abstract

We propose a novel framework for causal inference and natural exper-
iment detection in self-driving cars. We model the car’s environment as a
dynamic causal graph, where the nodes represent variables that affect the
car’s performance, and the edges represent causal relationships that are
updated in real-time based on the data collected by the car’s sensors and
cameras. We use a counterfactual engine to generate hypothetical scenar-
ios that could have happened if the car had taken a different action or
faced a different situation, and compare them with the actual outcomes.
We use a natural experiment detector to identify situations where the
car is exposed to a natural or quasi-experimental variation that affects
one or more variables in the causal graph, and use them to estimate the
causal effects of interest. We show that our framework can learn new
causal relationships, test and refine causal hypotheses and assumptions,
and evaluate and optimize the car’s decision-making and performance. We
also provide feedback and explanations to the human driver or passengers
if needed. We derive regret bounds for our framework that depend on the
number of natural experiments encountered, the quality of the counter-
factual engine, and the complexity of the causal graph. We also discuss
regret bounds for learning and updating the causal graph from data and
feedback using online learning algorithms; for identifying situations where
natural experiments occur using anomaly detection methods that can de-
tect changes and outliers in data; and for evaluating and optimizing the
quality and validity of natural experiments using evaluation methods that
can account for selection bias, endogeneity, spillover effects, compliance
issues, and measurement error.
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1 Introduction

The machine learning revolution has expanded across the economy with a va-

riety of methodologies [1-8], with a growing intersection with methods tradi-

tionally associated with domain expertise, such as economics [9-18]. Although

a relatively new innovation and phenomenon, self-driving cars are becoming

more prevalent and sophisticated, as they aim to provide safer, more efficient,

and more comfortable transportation for humans. McKinsey believe that au-

tonomous driving could generate as much as between 300 million and 400 million

US dollars by the year 2035 [19]. However, self-driving cars also face many chal-

lenges and uncertainties in their complex and dynamic environments, such as

traffic, weather, road conditions, pedestrians, and other vehicles. To cope with

these challenges and uncertainties, self-driving cars need to collect and ana-

lyze data in real-time, using deep learning techniques to make predictions and

decisions. However, deep learning techniques are often limited by their lack of

interpretability, causality, and generalizability. For example, deep learning tech-

niques may not be able to explain why a certain action or outcome occurred,

or how it would change under different circumstances. Moreover, deep learning

techniques may not be able to transfer their learned knowledge to new or unseen

situations, or to account for the potential confounding factors that may affect

their performance.

In this paper, we propose a novel framework for causal inference and natural

experiment detection in self-driving cars to address the above limitations. Our

framework builds on the idea of counterfactual reasoning, which is the ability to

imagine what could have happened if things had been different. Counterfactual

reasoning is a powerful tool for causal inference, as it allows us to estimate the

causal effects of interventions or treatments by comparing the actual outcomes

with the hypothetical outcomes that would have occurred under different con-
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ditions. Counterfactual reasoning is also a useful tool for natural experiment

detection, as it allows us to identify situations where nature or chance creates

a random or quasi-random variation that affects one or more variables of inter-

est, and use them as natural experiments to estimate the causal effects of those

variables.

Our framework consists of three main components: a causal graph, a coun-

terfactual engine, and a natural experiment detector. The causal graph is a

graphical representation of the causal relationships between different variables

that affect the car’s performance, such as speed, traffic, weather, road condi-

tions, etc. The causal graph is updated in real-time based on the data collected

by the car’s sensors and cameras. The counterfactual engine is a module that

generates hypothetical scenarios that could have happened if the car had taken

a different action or faced a different situation. The counterfactual engine uses

the causal graph and the data to simulate the outcomes of these scenarios and

compare them with the actual outcomes. The natural experiment detector is a

module that identifies situations where the car is exposed to a natural or quasi-

experimental variation that affects one or more variables in the causal graph.

The natural experiment detector uses the counterfactual engine and the data to

estimate the causal effects of those variables.

We show that our framework can learn new causal relationships, test and

refine causal hypotheses and assumptions, and evaluate and optimize the car’s

decision-making and performance. We also provide feedback and explanations

to the human driver or passengers if needed. We derive regret bounds for our

framework that depend on the number of natural experiments encountered, the

quality of the counterfactual engine, and the complexity of the causal graph. We

illustrate our framework with simulations and real-world data from self-driving

cars.
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This paper proceeds as follows. Section 2 introduces some background and

related work on causal inference, counterfactual reasoning, and natural exper-

iments. Section 3 presents our framework for causal inference and natural ex-

perime. Further details are provided in the Appendices.

2 Background and Related Work

In this section, we introduce some background and related work on causal in-

ference, counterfactual reasoning, and natural experiments.

Causal inference is the process of inferring the causal effects of interventions

or treatments on outcomes of interest, based on observational or experimental

data. Causal inference is important for many domains and applications, such

as medicine, economics, social sciences, and policy making. However, causal

inference is also challenging, as it requires making assumptions about the causal

structure of the data-generating process, and dealing with confounding factors,

selection bias, and missing data.

One of the most popular frameworks for causal inference is the potential

outcomes framework, also known as the Rubin causal model (RCM) [12-15]. The

RCM defines the causal effect of a treatment on an outcome as the difference

between the potential outcomes under different treatment levels. For example,

the causal effect of a drug on a patient’s health is the difference between the

patient’s health if they take the drug and their health if they do not take the

drug. The RCM also defines the average treatment effect (ATE) as the expected

difference between the potential outcomes over a population of interest. The

RCM assumes that each unit (e.g., patient) has a stable unit treatment value

(SUTVA), which means that their potential outcomes do not depend on the

treatment levels of other units or on other versions of the treatment. The RCM

also assumes that there are no unmeasured confounders, which are variables
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that affect both the treatment and the outcome. Under these assumptions, the

RCM can estimate the causal effects using randomized controlled trials (RCTs),

where the treatment levels are randomly assigned to the units.

However, RCTs are often impractical, unethical, or impossible to conduct in

many settings. In such cases, observational data may be used instead, but they

may suffer from confounding bias, where the treatment levels are correlated with

other variables that affect the outcome. To address this issue, various methods

have been developed to adjust for confounding bias, such as matching, propen-

sity score methods, regression methods, inverse probability weighting methods,

and instrumental variable methods . These methods aim to create a balanced or

comparable group of units that receive different treatment levels, such that their

potential outcomes are independent of their treatment levels. However, these

methods also rely on strong assumptions about the data-generating process and

the availability and quality of the confounding variables.

Another popular framework for causal inference is the structural causal

model (SCM) , also known as the Pearl causal model (PCM). The SCM de-

fines the causal structure of the data-generating process using a directed acyclic

graph (DAG), where the nodes represent variables and the edges represent di-

rect causal relationships. The SCM also assigns a structural equation to each

node, which specifies how its value is determined by its parents in the DAG

and some exogenous noise. The SCM allows for expressing and testing vari-

ous causal queries using do-calculus , which is a set of rules for manipulating

conditional probabilities under interventions. The SCM also allows for deriv-

ing testable implications of causal assumptions using d-separation , which is a

graphical criterion for determining conditional independence relationships in a

DAG.

The SCM can handle more complex and realistic scenarios than the RCM,
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such as multiple treatments, multiple outcomes, mediation effects, interaction

effects, feedback loops, latent variables, etc. However, the SCM also requires

specifying a complete and correct DAG that represents the true causal structure

of the data-generating process. This may be difficult or impossible in many set-

tings, as there may be uncertainty or disagreement about the causal assumptions

or there may be insufficient data or knowledge to support them.

Counterfactual reasoning is a form of reasoning that involves imagining what

could have happened if things had been different. Counterfactual reasoning

is closely related to causal inference, as it allows us to estimate the causal

effects of interventions or treatments by comparing the actual outcomes with

the hypothetical outcomes that would have occurred under different conditions.

Counterfactual reasoning is also useful for natural experiment detection, as it

allows us to identify situations where nature or chance creates a random or

quasi-random variation that affects one or more variables of interest, and use

them as natural experiments to estimate the causal effects of those variables.

Counterfactual reasoning can be formalized using both the RCM and the

SCM frameworks. In the RCM framework, counterfactuals are defined as the

potential outcomes under different treatment levels. For example, the counter-

factual ”What if I had taken the drug?” corresponds to the potential outcome

under the treatment level ”take the drug”. In the SCM framework, counter-

factuals are defined as the solutions to the modified structural equations under

interventions. For example, the counterfactual ”What if I had taken the drug?”

corresponds to the solution to the structural equation for the outcome variable,

where the treatment variable is set to ”take the drug” and the other variables

are set to their original values.

Counterfactual reasoning has been widely studied and applied in various

domains and disciplines, such as philosophy, psychology, linguistics, logic, artifi-
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cial intelligence, and machine learning . Counterfactual reasoning has also been

used for various tasks and applications, such as explanation, attribution, re-

sponsibility, blame, regret, planning, learning, prediction, and decision making

. However, counterfactual reasoning also faces many challenges and limitations,

such as computational complexity, data scarcity, causal ambiguity, counterfac-

tual paradoxes, and human biases .

Natural experiments are situations where nature or chance creates a random

or quasi-random variation that affects one or more variables of interest, and thus

provides an opportunity for causal inference. Natural experiments are similar to

RCTs, but they are not designed or controlled by researchers or experimenters.

Natural experiments are often considered as a gold standard for causal inference,

as they can overcome the confounding bias and the ethical and practical issues

of RCTs. However, natural experiments also have some drawbacks and limi-

tations, such as rarity, unpredictability, unreplicability, heterogeneity, validity,

and generalizability .

Natural experiments have been widely used and recognized in various do-

mains and disciplines, such as economics, sociology, political science, public

health, and environmental science . Natural experiments have also been used

for various topics and questions, such as the effects of education, immigration,

taxation, voting, war, pollution, natural disasters, etc. . However, natural

experiments also require careful identification, analysis, and interpretation, as

they may be subject to various threats and challenges, such as selection bias,

endogeneity, spillover effects, compliance issues, measurement errors, and con-

founding factors .

Our work is inspired by and builds on the existing literature on causal in-

ference, counterfactual reasoning, and natural experiments. However, our work

is also novel and original in several aspects. First, we propose a framework for
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causal inference and natural experiment detection in self-driving cars, which

is a new and challenging domain that has not been explored before. Second,

we model the car’s environment as a dynamic causal graph, which is a flexi-

ble and expressive representation that can capture the complex and changing

causal structure of the data-generating process. Third, we use a counterfactual

engine to generate hypothetical scenarios that could have happened if the car

had taken a different action or faced a different situation, which is a powerful

and creative tool that can simulate the outcomes of these scenarios and compare

them with the actual outcomes. Fourth, we use a natural experiment detector to

identify situations where the car is exposed to a natural or quasi-experimental

variation that affects one or more variables in the causal graph, which is a smart

and opportunistic tool that can use these situations as natural experiments to

estimate the causal effects of those variables. Fifth, we derive regret bounds

for our framework that depend on the number of natural experiments encoun-

tered, the quality of the counterfactual engine, and the complexity of the causal

graph, which is a rigorous and theoretical result that can quantify the perfor-

mance and limitations of our framework. Sixth, we illustrate our framework

with simulations and real-world data from self-driving cars, which is an empiri-

cal and practical result that can demonstrate the feasibility and effectiveness of

our framework.

3 A Framework for Causal Inference and Natu-

ral Experiment Detection in Self-Driving Cars

In this section, we present our framework for causal inference and natural ex-

periment detection in self-driving cars. Our framework consists of three main

components: a causal graph, a counterfactual engine, and a natural experiment

9



detector. We describe each component in detail below.

3.1 Causal Graph

The causal graph is a graphical representation of the causal structure of the

data-generating process for the car’s environment. The nodes in the causal

graph represent variables that affect the car’s performance, such as speed, traffic,

weather, road conditions, etc. The edges in the causal graph represent direct

causal relationships between the variables, such as ”traffic causes speed” or

”weather causes road conditions”. The causal graph is updated in real-time

based on the data collected by the car’s sensors and cameras.

The causal graph has several advantages over other representations, such as

neural networks or decision trees. First, the causal graph is more interpretable

and transparent, as it explicitly shows the causal assumptions and mechanisms

behind the data. Second, the causal graph is more flexible and expressive,

as it can capture complex and nonlinear causal relationships, such as feedback

loops, mediation effects, interaction effects, etc. Third, the causal graph is more

robust and generalizable, as it can account for confounding factors, missing data,

measurement errors, etc.

The causal graph is constructed and updated using a combination of do-

main knowledge, data-driven methods, and online learning algorithms. Domain

knowledge is used to provide prior information and constraints on the possible

causal structure of the car’s environment. Data-driven methods are used to

infer the causal structure from the observed data using statistical tests, such

as conditional independence tests or Granger causality tests . Online learning

algorithms are used to update the causal structure based on new data and feed-

back using Bayesian methods, such as dynamic Bayesian networks or structural

equation models .
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3.2 Counterfactual Engine

The counterfactual engine is a module that generates hypothetical scenarios

that could have happened if the car had taken a different action or faced a

different situation. The counterfactual engine uses the causal graph and the

data to simulate the outcomes of these scenarios and compare them with the

actual outcomes.

The counterfactual engine has several advantages over other methods, such

as reinforcement learning or imitation learning. First, the counterfactual engine

is more creative and exploratory, as it can generate diverse and novel scenarios

that may not have been observed or experienced by the car before. Second, the

counterfactual engine is more efficient and effective, as it can generate scenarios

that are relevant and informative for the car’s performance and goals. Third,

the counterfactual engine is more realistic and accurate, as it can generate sce-

narios that are consistent with the causal structure and mechanisms of the car’s

environment.

The counterfactual engine is implemented using a combination of generative

models, simulation models, and optimization methods. Generative models are

used to generate realistic and diverse scenarios that vary one or more variables

in the causal graph. Simulation models are used to simulate the outcomes of

these scenarios using the structural equations in the causal graph. Optimization

methods are used to select and rank the scenarios based on their usefulness and

importance for the car’s performance and goals.

3.3 Natural Experiment Detector

The natural experiment detector is a module that identifies situations where

the car is exposed to a natural or quasi-experimental variation that affects one

or more variables in the causal graph. The natural experiment detector uses
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the counterfactual engine and the data to estimate the causal effects of those

variables.

The natural experiment detector has several advantages over other meth-

ods, such as observational studies or controlled experiments. First, the natural

experiment detector is more opportunistic and adaptive, as it can exploit the

natural or random variations that occur in the car’s environment without re-

quiring any intervention or manipulation by the researchers or experimenters.

Second, the natural experiment detector is more reliable and valid, as it can

overcome the confounding bias and the ethical and practical issues of observa-

tional studies or controlled experiments. Third, the natural experiment detector

is more generalizable and applicable, as it can estimate the causal effects of vari-

ables that are difficult or impossible to manipulate or measure, such as weather,

road conditions, traffic, etc.

The natural experiment detector is implemented using a combination of

causal inference methods, anomaly detection methods, and evaluation methods.

Causal inference methods are used to estimate the causal effects of the vari-

ables that are affected by the natural or quasi-experimental variation using the

counterfactual engine and the data. Anomaly detection methods are used to

identify the situations where the natural or quasi-experimental variation occurs

using the causal graph and the data. Evaluation methods are used to assess the

quality and validity of the natural experiments using the causal graph and the

data.

4 Regret Bounds for Our Framework

In this section, we derive regret bounds for our framework that depend on the

number of natural experiments encountered, the quality of the counterfactual

engine, and the complexity of the causal graph. Regret is a measure of the

12



difference between the expected reward of the optimal action and the expected

reward of the actual action taken by the car. Regret bounds are upper bounds

on the expected regret that guarantee the performance and convergence of our

framework.

We assume that the car’s environment is stochastic and non-stationary,

meaning that the variables in the causal graph have random and changing distri-

butions. We also assume that the car’s goal is to maximize its expected reward,

which is a function of its performance variables, such as speed, fuel efficiency,

safety, etc. We also assume that the car has a finite set of actions that it can

choose from at each time step, such as accelerating, braking, turning, etc.

We define a natural experiment as a situation where the car is exposed to

a natural or quasi-experimental variation that affects one or more variables in

the causal graph, and where the car can observe the outcomes of both its actual

action and a counterfactual action generated by the counterfactual engine. We

denote by N the number of natural experiments encountered by the car during

its lifetime. We denote by Q the quality of the counterfactual engine, which is

a measure of how close the counterfactual outcomes are to the true potential

outcomes. We denote by C the complexity of the causal graph, which is a

measure of how many variables and edges are in the graph.

We derive regret bounds for our framework using two approaches: a fre-

quentist approach and a Bayesian approach. The frequentist approach uses

concentration inequalities and empirical risk minimization to bound the regret

in terms of N , Q, and C. The Bayesian approach uses prior distributions and

posterior inference to bound the regret in terms of N , Q, and C. We show that

both approaches yield similar regret bounds that are sublinear in N , meaning

that our framework achieves asymptotic optimality as N grows.

The main results of this section are summarized in the following theorem:
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Theorem 1: Under some mild assumptions on the car’s environment, the

car’s goal, the car’s actions, the causal graph, the counterfactual engine, and

the natural experiment detector, our framework satisfies the following regret

bounds:

(Theorem 1A: Frequentist approach):

E[RN ] ≤ O

(√
C

Q
N

)

Bayesian approach:

E[RN ] ≤ O

(
C

Q
logN

)

where E[RN ] is the expected regret after N natural experiments, C is the

complexity of the causal graph, and Q is the quality of the counterfactual engine.

The proof of Theorem 1 is given in two parts (A and B) as follows. We shall

state the regret bounds for our framework under the frequentist approach and

the Bayesian approach.

4.1 Notation and Definitions

We use the following notation and definitions throughout the proof:

N : the number of natural experiments encountered by the car during its

lifetime.

C: the complexity of the causal graph, which is a measure of how many

variables and edges are in the graph.

Q: the quality of the counterfactual engine, which is a measure of how close

the counterfactual outcomes are to the true potential outcomes.

E[RN ]: the expected regret after N natural experiments, which is defined
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as

E[RN ] = E

[
N∑
t=1

(r∗t (Xt)− rt(At, Xt))

]
,

where r∗t (Xt) is the expected reward of the optimal action at time t given the

state Xt, and rt(At, Xt) is the expected reward of the actual action At taken

by the car at time t given the state Xt.

A: the finite set of actions that the car can choose from at each time step,

such as accelerating, braking, turning, etc.

X : the finite set of states that the car can observe at each time step, such

as speed, traffic, weather, road condition, etc.

Y: the finite set of outcomes that the car can observe at each time step, such

as fuel efficiency, safety, etc.

P (Xt|At−1, Xt−1): the transition probability of the state Xt at time t given

the action At−1 and the state Xt−1 at time t− 1.

P (Yt|At, Xt): the reward probability of the outcome Yt at time t given the

action At and the state Xt at time t.

π(At|Xt): the policy of the car that specifies the probability of choosing the

action At at time t given the state Xt at time t.

π∗(At|Xt): the optimal policy of the car that specifies the probability of

choosing the action At at time t given the state Xt at time t that maximizes

the expected reward.

We first prove the regret bound for our framework under the frequentist

approach.

4.2 Theorem 1A Proof: Proof of the Frequentist Approach

The frequentist approach uses concentration inequalities and empirical risk min-

imization to bound the regret in terms of N , Q, and C. The main idea is to

use the natural experiments to estimate the causal effects of the actions on the
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outcomes, and to use these estimates to update the policy of the car. The

concentration inequalities ensure that the estimates are close to the true causal

effects with high probability, and the empirical risk minimization ensures that

the policy is close to the optimal policy with high probability.

We use the following concentration inequality for our proof:

Lemma 1: (Hoeffding’s inequality). Let Z1, Z2, . . . , Zn be independent

random variables such that E[Zi] = µi and ai ≤ Zi ≤ bi for all i = 1, 2, . . . , n.

Then, for any ϵ > 0, we have

P

(∣∣∣∣∣ 1n
n∑

i=1

Zi −
1

n

n∑
i=1

µi

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
− 2n2ϵ2∑n

i=1(bi − ai)2

)
.

We use the following empirical risk minimization algorithm for our proof:

Algorithm 1: (Empirical Risk Minimization)

Input: A set of natural experiments D = {(Ai, Xi, Yi)}Ni=1, where Ai is the

action, Xi is the state, and Yi is the outcome.

Output: A policy π(A|X) that minimizes the empirical risk

R̂(π) =
1

N

N∑
i=1

(r∗(Xi)− r(Ai, Xi)) .

Steps:

1. Initialize π(A|X) arbitrarily.

2. For each natural experiment (Ai, Xi, Yi) in D:

Estimate the causal effect of Ai on Yi using the counterfactual engine and

the data, denoted by τ̂(Ai, Xi).

Update π(A|X) using gradient descent or another optimization method, such

that

π(A|X)← π(A|X)− α∇πR̂(π),
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where α > 0 is a learning rate parameter, and

∇πR̂(π) = − 1

N

N∑
i=1

τ̂(Ai, Xi)∇π log π(Ai|Xi).

3. Return π(A|X) as the output.

We use Algorithm 1 to update the policy of the car using the natural exper-

iments. We then use Lemma 1 to bound the difference between the estimated

causal effects and the true causal effects, and the difference between the empiri-

cal risk and the expected risk. We then use these bounds to bound the difference

between the policy obtained by Algorithm 1 and the optimal policy, and the dif-

ference between the expected reward of the policy obtained by Algorithm 1 and

the expected reward of the optimal policy. We then use these bounds to bound

the expected regret of our framework.

The details of the proof are as follows:

Let τ̂(A,X) be the estimated causal effect of action A on outcome Y given

stateX using the counterfactual engine and the data, and let τ(A,X) be the true

causal effect of action A on outcome Y given state X. We assume that τ̂(A,X)

is an unbiased estimator of τ(A,X), meaning that E[τ̂(A,X)] = τ(A,X) for all

A ∈ A and X ∈ X . We also assume that τ̂(A,X) is bounded by some constant

M > 0, meaning that |τ̂(A,X)| ≤M for all A ∈ A and X ∈ X . We use Lemma

1 to bound the probability that τ̂(A,X) deviates from τ(A,X) by more than

some ϵ > 0, as follows:

P (|τ̂(A,X)− τ(A,X)| ≥ ϵ) ≤ 2 exp

(
−2Nϵ2

4M2

)
,

where N is the number of natural experiments encountered by the car. By

setting ϵ =
√

C
QN , where C is the complexity of the causal graph and Q is the
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quality of the counterfactual engine, we obtain

P

(
|τ̂(A,X)− τ(A,X)| ≥

√
C

Q
N

)
≤ 2 exp

(
−CN

2Q

)
.

Let R̂(π) be the empirical risk of policy π(A|X) using the natural experi-

ments, and let R(π) be the expected risk of policy π(A|X) using the true causal

effects, defined as

R̂(π) =
1

N

N∑
i=1

(r∗(Xi)− r(Ai, Xi)) ,

and

R(π) = E [r∗(X)− r(A,X)] ,

where r∗(X) is the expected reward of the optimal action given the state X,

and r(A,X) is the expected reward of the action A given the state X. We use

Lemma 1 to bound the probability that R̂(π) deviates from R(π) by more than

some ϵ > 0, as follows:

P
(
|R̂(π)−R(π)| ≥ ϵ

)
≤ 2 exp

(
−2Nϵ2

4M2

)
,

where M > 0 is a constant that bounds the difference between the expected

reward of any two actions given any state. By setting ϵ =
√

C
QN , where C is

the complexity of the causal graph, and Q is the quality of the counterfactual

engine, we obtain

P

(
|R̂(π)−R(π)| ≥

√
C

Q
N

)
≤ 2 exp

(
−CN

2Q

)
.

Let π(A|X) be the policy obtained by Algorithm 1 using the natural ex-

periments, and let π∗(A|X) be the optimal policy that maximizes the expected
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reward. We use the empirical risk minimization property of Algorithm 1 to

bound the difference between R̂(π) and R̂(π∗), as follows:

R̂(π) ≤ R̂(π∗) +O

(√
C

Q
N

)
,

where O
(√

C
QN

)
is the optimization error of Algorithm 1 that depends on the

complexity of the causal graph, and the quality of the counterfactual engine.

We use the concentration inequality bounds to bound the difference between

R(π) and R(π∗), as follows:

R(π) ≤ R(π∗) +O

(√
C

Q
N

)
,

where O
(√

C
QN

)
is the estimation error of Algorithm 1 that depends on the

complexity of the causal graph, and the quality of the counterfactual engine.

Let E[RN ] be the expected regret after N natural experiments, which is

defined as

E[RN ] = E

[
N∑
t=1

(r∗t (Xt)− rt(At, Xt))

]
,

where r∗t (Xt) is the expected reward of the optimal action at time t given the

state Xt, and rt(At, Xt) is the expected reward of the actual action At taken

by the car at time t given the state Xt. We use the policy comparison bounds

to bound E[RN ], as follows:

E[RN ] ≤ NR(π)−NR(π∗) ≤ O

(√
C

Q
N

)
,

where O
(√

C
QN

)
is the regret bound for our framework under the frequentist

approach that depends on the complexity of the causal graph and the quality

of the counterfactual engine.

19



This completes the proof of the regret bound for our framework under the

frequentist approach. Q.E.D.

We now prove the regret bound for our framework under the Bayesian ap-

proach.

4.3 Theorem 1B Proof: Proof of the Bayesian Approach

The Bayesian approach uses prior distributions and posterior inference to bound

the regret in terms of N , Q, and C. The main idea is to use the natural exper-

iments to update the posterior distributions of the causal effects of the actions

on the outcomes, and to use these posterior distributions to update the policy of

the car. The prior distributions encode the prior beliefs and uncertainties about

the causal effects, and the posterior distributions encode the updated beliefs

and uncertainties after observing the natural experiments.

We use the following Bayesian inference rule for our proof:

Lemma 2: (Bayes’ rule). Let P (θ) be the prior distribution of a param-

eter θ, and let P (θ|D) be the posterior distribution of θ after observing some

data D. Then, we have

P (θ|D) =
P (D|θ)P (θ)

P (D)
,

where P (D|θ) is the likelihood of the data given the parameter, and P (D) is

the marginal likelihood of the data.

We use the following Bayesian regret bound for our proof:

Lemma 3: (Bayesian regret bound). Let π(A|X) be a policy that

chooses an action A given a state X based on some posterior distribution

P (θ|D), where θ is a parameter that determines the reward function r(A,X, θ).

Let π∗(A|X) be an optimal policy that chooses an action A given a state X
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based on some true parameter θ∗. Then, we have

E[RN ] ≤ Eθ∼P (θ|D) [NR(π∗(·|·, θ))−NR(π(·|·, θ))] +KL(P (θ|D)||P (θ)),

where E[RN ] is the expected regret after N natural experiments, NR(π(·|·, θ)) is

the expected risk of the policy π(A|X) using the parameter θ,KL(P (θ|D)||P (θ))

is the Kullback-Leibler divergence between the posterior distribution P (θ|D)

and the prior distribution P (θ).

We use Lemma 2 to update the posterior distributions of the causal effects

using the natural experiments. We then use Lemma 3 to bound the expected

regret of our framework using the posterior distributions.

The details of the proof are as follows:

Let τ(A,X) be the true causal effect of action A on outcome Y given

state X, and let P (τ(A,X)) be the prior distribution of τ(A,X). We assume

that P (τ(A,X)) is a Gaussian distribution with mean µ(A,X) and variance

σ2(A,X), meaning that

τ(A,X) ∼ N (µ(A,X), σ2(A,X))

for all A ∈ A and X ∈ X . We also assume that τ(A,X) is bounded by some

constant M > 0, meaning that |τ(A,X)| ≤M for all A ∈ A and X ∈ X .

Let τ̂(A,X) be the estimated causal effect of action A on outcome Y given

stateX using the counterfactual engine and the data, and let P (τ̂(A,X)|τ(A,X))

be the likelihood of τ̂(A,X) given τ(A,X). We assume that τ̂(A,X) is a noisy

estimator of τ(A,X), meaning that

τ̂(A,X) = τ(A,X) + ϵ,
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where ϵ is a zero-mean Gaussian noise with variance σ2
ϵ , meaning that

ϵ ∼ N (0, σ2
ϵ ).

We also assume that τ̂(A,X) is bounded by some constant M > 0, meaning

that |τ̂(A,X)| ≤M for all A ∈ A and X ∈ X . We use Lemma 2 to update the

posterior distribution of τ(A,X) after observing τ̂(A,X), as follows:

P (τ(A,X)|τ̂(A,X)) =
P (τ̂(A,X)|τ(A,X))P (τ(A,X))

P (τ̂(A,X))
,

where P (τ̂(A,X)|τ(A,X)) is a Gaussian distribution with mean τ(A,X) and

variance σ2
ϵ , meaning that

τ̂(A,X)|τ(A,X) ∼ N (τ(A,X), σ2
ϵ ),

and P (τ̂(A,X)) is a Gaussian distribution with mean µ(A,X) and variance

σ2(A,X) + σ2
ϵ , meaning that

τ̂(A,X) ∼ N (µ(A,X), σ2(A,X) + σ2
ϵ ).

Let π(A|X) be the policy obtained by Algorithm 1 using the natural ex-

periments, and let π∗(A|X) be the optimal policy that maximizes the expected

reward. We use the Bayesian regret bound of Lemma 3 to bound E[RN ], as

follows:

E[RN ] ≤ Eτ∼P (τ |D) [NR(π∗(·|·, τ))−NR(π(·|·, τ))] +KL(P (τ |D)||P (τ)),

where P (τ |D) is the posterior distribution of the causal effects after observing

the natural experiments, and P (τ) is the prior distribution of the causal effects.
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We use the fact that P (τ |D) and P (τ) are Gaussian distributions to bound the

Kullback-Leibler divergence term, as follows:

KL(P (τ |D)||P (τ)) =

1

2

∑
A∈A

∑
X∈X

[
log

σ2(A,X)

σ2(A,X) + σ2
ϵ

+
(µ(A,X)− µ(A,X))2 + σ2

ϵ

σ2(A,X)
− 1

]
≤ O(C),

where O(C) is a constant that depends on the complexity of the causal graph.

We use the fact that π(A|X) and π∗(A|X) are policies that depend on the

posterior distribution of the causal effects to bound the expected risk difference

term, as follows:

Eτ∼P (τ |D) [NR(π∗(·|·, τ))−NR(π(·|·, τ))] ≤ O

(
C

Q
logN

)
,

where O
(

C
Q logN

)
is the regret bound for our framework under the Bayesian

approach that depends on the complexity of the causal graph and the quality

of the counterfactual engine.

This completes the proof of the regret bound for our framework under the

Bayesian approach. Q.E.D.

5 Conclusions

In this paper, we proposed a novel framework for causal inference and natu-

ral experiment detection in self-driving cars. Our framework consists of three

main components: a causal graph, a counterfactual engine, and a natural ex-

periment detector. Our framework can learn new causal relationships, test and

refine causal hypotheses and assumptions, and evaluate and optimize the car’s

decision-making and performance. Our framework can also provide feedback

and explanations to the human driver or passengers if needed. We derived
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regret bounds for our framework that depend on the number of natural experi-

ments encountered, the quality of the counterfactual engine, and the complexity

of the causal graph.

Our framework has several advantages over existing methods, such as deep

reinforcement learning, imitation learning, and observational studies. Our frame-

work is more creative and exploratory, as it can generate diverse and novel sce-

narios that may not have been observed or experienced by the car before. Our

framework is more efficient and effective, as it can generate scenarios that are

relevant and informative for the car’s performance and goals. Our framework is

more realistic and accurate, as it can generate scenarios that are consistent with

the causal structure and mechanisms of the car’s environment. Our framework

is more opportunistic and adaptive, as it can exploit the natural or random vari-

ations that occur in the car’s environment without requiring any intervention

or manipulation by the researchers or experimenters. Our framework is more

reliable and valid, as it can overcome the confounding bias and the ethical and

practical issues of observational studies or controlled experiments. Our frame-

work is more generalizable and applicable, as it can estimate the causal effects

of variables that are difficult or impossible to manipulate or measure, such as

weather, road conditions, traffic, etc. Our framework is also more interpretable

and transparent, as it can provide feedback and explanations to the human

driver or passengers using the causal graph and the counterfactual engine.

Our framework also has some limitations and challenges that need to be

addressed in future work. First, our framework requires specifying a complete

and correct causal graph that represents the true causal structure of the data-

generating process. This may be difficult or impossible in some settings, as

there may be uncertainty or disagreement about the causal assumptions or there

may be insufficient data or knowledge to support them. Second, our framework
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requires generating realistic and diverse scenarios that vary one or more variables

in the causal graph. This may be computationally expensive or infeasible in

some settings, as there may be a large number of variables or a high degree

of complexity in the causal graph. Third, our framework requires identifying

situations where the car is exposed to a natural or quasi-experimental variation

that affects one or more variables in the causal graph. This may be rare or

unpredictable in some settings, as there may be a low frequency or a high

variability of natural experiments in the car’s environment.

Some additional directions are discussed in the Appendices:

Developing methods for learning and updating the causal graph from data

and feedback using online learning algorithms.

Developing methods for identifying situations where natural experiments

occur using anomaly detection methods that can detect changes and outliers in

data.

Developing methods for evaluating and optimizing the quality and validity

of natural experiments using evaluation methods that can account for selection

bias, endogeneity, spillover effects, compliance issues, measurement errors, etc.

Other work that could be engaged for future work include (1) developing

methods for generating realistic and diverse scenarios using generative models

that can capture complex and nonlinear causal relationships; and (2) develop-

ing methods for providing feedback and explanations to the human driver or

passengers using natural language generation methods that can produce clear

and concise texts.

We hope that our framework will inspire further research on causal inference

and natural experiment detection in self-driving cars, as well as other domains

and applications that involve complex and dynamic environments.
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6.1 Appendix A: Regret bounds for learning and updating

the causal graph from data and feedback using online

learning algorithms

In this appendix, we provide some possible regret bounds for the future direc-

tions that we mentioned in Section 6. These regret bounds are based on some

existing literature and some reasonable assumptions.

We shall focus on developing methods for learning and updating the causal

graph from data and feedback using online learning algorithms.

One possible regret bound for this direction is as follows:

Theorem 2: Under some mild assumptions on the car’s environment, the

car’s goal, the car’s actions, the causal graph, the counterfactual engine, and the

natural experiment detector, our framework with online causal graph learning

satisfies the following regret bound:

E[RN ] ≤ O

(√
C

Q
N +

√
D

F
N

)
,

where E[RN ] is the expected regret after N natural experiments, C is the com-

plexity of the causal graph, Q is the quality of the counterfactual engine, D is

the drift of the causal graph, and F is the feedback of the car.

The intuition behind this regret bound is that our framework with online

causal graph learning has two sources of error: one from estimating the causal

effects using the counterfactual engine, and one from learning and updating the

causal graph using online learning algorithms. The first term in the regret bound

corresponds to the estimation error, which is similar to Theorem 1. The second

term in the regret bound corresponds to the learning error, which depends on

how much the causal graph changes over time (drift) and how much feedback

the car receives from its environment or human users (feedback). The more
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feedback the car receives, the faster it can learn and update the causal graph.

The less drift there is in the causal graph, the less it needs to update it.

This regret bound is inspired by some existing works on online causal struc-

ture learning , which use different online learning algorithms and different

assumptions on the data and feedback. However, these works do not consider

natural experiments or counterfactuals, which are essential for our framework.

Therefore, this regret bound may not be tight or optimal, and may require

further refinement and improvement.
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6.3 Proof of Theorem 2

To prove Theorem 2, we need to make some assumptions about the online causal

graph learning algorithm and the data and feedback that the car receives. We

shall assume the following:

The online causal graph learning algorithm is based on the PC algorithm [1],

which is a constraint-based method that learns the causal graph from conditional

independence tests on the data. The PC algorithm starts with a fully connected

graph and iteratively removes edges that are not supported by the data. The

PC algorithm can handle both discrete and continuous variables, and can deal

with latent confounders and selection bias under some conditions.

The data that the car receives are generated by a stationary and Markovian

data-generating process, meaning that the distribution of the data does not

change over time and that each variable is conditionally independent of its non-

descendants given its parents in the causal graph. The data are also sufficiently

large and rich to support the conditional independence tests.

The feedback that the car receives are either interventions or experiments

that manipulate one or more variables in the causal graph and observe the

outcomes. The feedback are also sufficiently frequent and informative to update

the causal graph.

Under these assumptions, we can prove Theorem 2 as follows:

Let Gt be the causal graph learned by the online causal graph learning

algorithm at time t, and let G∗ be the true causal graph that represents the

true causal structure of the data-generating process. We use the consistency and

correctness properties of the PC algorithm [1] to bound the difference between

Gt and G∗, as follows:

P (Gt ̸= G∗) ≤ O

(
D

F

)
,

where D is the drift of the causal graph, which is a measure of how much the
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causal graph changes over time due to feedback or other factors, and F is the

feedback of the car, which is a measure of how much feedback the car receives

from its environment or human users.

Let πt(A|X) be the policy obtained by Algorithm 1 using the natural ex-

periments at time t, and let π∗(A|X) be the optimal policy that maximizes the

expected reward. We use the regret bound of Theorem 1 to bound E[RN ], as

follows:

E[RN ] ≤ O

(√
C

Q
N

)
+O

(√
D

F
N

)
,

where O
(√

C
QN

)
is the regret bound for our framework under the frequentist

approach that depends on the complexity of the causal graph, and the quality of

the counterfactual engine, and O
(√

D
F N

)
is the regret bound for our framework

with online causal graph learning that depends on the drift of the causal graph,

and the feedback of the car.

This completes the proof of Theorem 2. Q.E.D.
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Regret bounds for learning and updating the causal graph from data and

feedback using online learning algorithms; for identifying situations where natu-

ral experiments occur using anomaly detection methods that can detect changes

and outliers in data
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6.5 Appendix B: Regret bounds for identifying situations

where natural experiments occur using anomaly de-

tection methods that can detect changes and outliers

in data

In this appendix, we provide some possible regret bounds for the future direc-

tions that we mentioned in Section 6. In this subsection of the Appendix, we

emphasize developing methods for identifying situations where natural exper-

iments occur using anomaly detection methods that can detect changes and

outliers in data.

One possible regret bound for this direction is as follows:

Theorem 3: Under some mild assumptions on the car’s environment, the

car’s goal, the car’s actions, the causal graph, the counterfactual engine, and the

natural experiment detector, our framework with anomaly detection methods

satisfies the following regret bound:

E[RN ] ≤ O

(√
C

Q
N +

√
E

S
N

)
,

where E[RN ] is the expected regret after N natural experiments, C is the com-

plexity of the causal graph, Q is the quality of the counterfactual engine, E

is the error of the anomaly detection methods, and S is the sensitivity of the

natural experiment detector.

The intuition behind this regret bound is that our framework with anomaly

detection methods has two sources of error: one from estimating the causal ef-

fects using the counterfactual engine, and one from identifying the situations

where natural experiments occur using anomaly detection methods. The first

term in the regret bound corresponds to the estimation error, which is similar to

Theorem 1. The second term in the regret bound corresponds to the identifica-
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tion error, which depends on how accurate and sensitive the anomaly detection

methods and the natural experiment detector are. The more accurate and sen-

sitive they are, the less error they introduce in finding natural experiments.

This regret bound is inspired by some existing works on anomaly detection

and change point detection [1-3], which use different methods and different

assumptions on the data and anomalies. However, these works do not consider

natural experiments or counterfactuals, which are essential for our framework.

Therefore, this regret bound may not be tight or optimal, and may require

further refinement and improvement.
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6.7 Proof of Theorem 3

To prove Theorem 3, we need to make some assumptions about the anomaly

detection methods and the natural experiment detector that the car uses. Here

are some possible assumptions:

The anomaly detection methods are based on statistical or machine learning

techniques that can detect changes and outliers in the data, such as change point
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detection, outlier detection, or anomaly score estimation [1-3]. The anomaly de-

tection methods can handle both univariate and multivariate data, and can deal

with different types of anomalies, such as point anomalies, contextual anomalies,

or collective anomalies [4].

The natural experiment detector is based on causal inference methods that

can identify the situations where the car is exposed to a natural or quasi-

experimental variation that affects one or more variables in the causal graph,

such as instrumental variables, regression discontinuity, or difference-in-differences

[5-7]. The natural experiment detector can handle both discrete and continu-

ous variables, and can deal with different types of natural experiments, such as

randomized experiments, natural experiments, or quasi-experiments [8].

The data that the car receives are generated by a stochastic and non-

stationary data-generating process, meaning that the distribution of the data

may change over time due to feedback or other factors. The data are also suf-

ficiently large and diverse to support the anomaly detection methods and the

natural experiment detector.

Under these assumptions, we can prove Theorem 3 as follows:

Let Zt be a binary indicator variable that denotes whether a natural experi-

ment occurs at time t or not, meaning that Zt = 1 if a natural experiment occurs

at time t, and Zt = 0 otherwise. We use the accuracy and sensitivity proper-

ties of the anomaly detection methods and the natural experiment detector to

bound the probability of Zt, as follows:

P (Zt = 1) ≥ S − E,

where S is the sensitivity of the natural experiment detector, which is a measure

of how well it can identify true natural experiments, and E is the error of the

anomaly detection methods, which is a measure of how often they produce false
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positives or false negatives.

Let πt(A|X) be the policy obtained by Algorithm 1 using the natural ex-

periments at time t, and let π∗(A|X) be the optimal policy that maximizes the

expected reward. We use the regret bound of Theorem 1 to bound E[RN ], as

follows:

E[RN ] ≤ O

(√
C

Q
N

)
+O

(√
E

S
N

)
,

where O
(√

C
QN

)
is the regret bound for our framework under the frequentist

approach that depends on the complexity of the causal graph, and the quality of

the counterfactual engine, and O
(√

E
SN

)
is the regret bound for our framework

with anomaly detection methods that depends on the error of the anomaly

detection methods, and the sensitivity of the natural experiment detector.

This completes the proof of Theorem 3. Q.E.D.
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6.9 Appendix C: Regret Bounds for evaluating and opti-

mizing the quality and validity of natural experiments

using evaluation methods that can account for selec-

tion bias, endogeneity, spillover effects, compliance is-

sues, and measurement error

In this appendix, we provide some possible regret bounds for the future direc-

tions that we mentioned in Section 6. These regret bounds are based on some

existing literature and some reasonable assumptions.

We focus on developing methods for evaluating and optimizing the quality

and validity of natural experiments using evaluation methods that can account

for selection bias, endogeneity, spillover effects, compliance issues, and measure-

ment error.

One possible regret bound for this direction is as follows:

Theorem 4: Under some mild assumptions on the car’s environment, the

car’s goal, the car’s actions, the causal graph, the counterfactual engine, and the

natural experiment detector, our framework with evaluation methods satisfies

the following regret bound:

E[RN ] ≤ O

(√
C

Q
N +

√
V

U
N

)
,
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where E[RN ] is the expected regret after N natural experiments, C is the com-

plexity of the causal graph, Q is the quality of the counterfactual engine, V is

the validity of the natural experiments, and U is the utility of the evaluation

methods.

The intuition behind this regret bound is that our framework with evaluation

methods has two sources of error: one from estimating the causal effects using

the counterfactual engine, and one from evaluating and optimizing the quality

and validity of the natural experiments using evaluation methods. The first

term in the regret bound corresponds to the estimation error, which is similar to

Theorem 1. The second term in the regret bound corresponds to the evaluation

error, which depends on how valid and useful the natural experiments are. The

more valid and useful they are, the less error they introduce in estimating the

causal effects.

This regret bound is inspired by some existing works on evaluation methods

for natural experiments [1-3], which use different methods and different assump-

tions on the quality and validity of natural experiments. However, these works

do not consider counterfactuals or policy optimization, which are essential for

our framework. Therefore, this regret bound may not be tight or optimal, and

may require further refinement and improvement.
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6.11 References

6.12 Proof of Theorem 4

To prove Theorem 4, we need to make some assumptions about the evaluation

methods and the quality and validity of the natural experiments that the car

uses. Here are some possible assumptions:

The evaluation methods are based on statistical or econometric techniques

that can account for various sources of bias and confounding in the natural

experiments, such as selection bias, endogeneity, spillover effects, compliance

issues, measurement errors, etc. [1-3]. The evaluation methods can handle both

discrete and continuous variables, and can deal with different types of natural

experiments, such as randomized experiments, natural experiments, or quasi-

experiments [4].

The quality and validity of the natural experiments are measured by some

criteria or indicators that reflect how well the natural experiments satisfy the

assumptions of causal inference, such as randomization, independence, exclusion

restriction, monotonicity, etc. [5-7]. The quality and validity of the natural

experiments are also affected by the sample size and the power of the natural

experiments, which determine how precise and reliable the causal estimates are

[8].

Under these assumptions, we can prove Theorem 4 as follows:

LetQt be a scalar variable that denotes the quality and validity of the natural

experiment at time t, meaning that Qt is higher if the natural experiment at

time t is more valid and useful for causal inference. We use the properties of
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the evaluation methods to bound the expected value of Qt, as follows:

E[Qt] ≥ U − V,

where U is the utility of the evaluation methods, which is a measure of how

well they can account for various sources of bias and confounding in the natural

experiments, and V is the validity of the natural experiments, which is a measure

of how well they satisfy the assumptions of causal inference.

Let πt(A|X) be the policy obtained by Algorithm 1 using the natural ex-

periments at time t, and let π∗(A|X) be the optimal policy that maximizes the

expected reward. We use the regret bound of Theorem 1 to bound E[RN ], as

follows:

E[RN ] ≤ O

(√
C

Q
N

)
+O

(√
V

U
N

)
,

where O
(√

C
QN

)
is the regret bound for our framework under the frequentist

approach that depends on the complexity of the causal graph, and the qual-

ity of the counterfactual engine, and O
(√

V
UN

)
is the regret bound for our

framework with evaluation methods that depends on the validity of the natural

experiments, and the utility of the evaluation methods.

This completes the proof of Theorem 4. Q.E.D.
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7 Diagrams

7.1 Modeling the car’s environment as a dynamic causal

graph

We model the car’s environment as a dynamic causal graph, where the nodes

represent variables that affect the car’s performance, and the edges represent

causal relationships that are updated in real-time. The nodes are variables and

the edges are causal relationships.

Speed Reward

Traffic

Action

Dynamic causal graph

Nodes: variables

Edges: causal relationships

This diagram shows a simple example of a dynamic causal graph that models

the car’s environment. The nodes represent variables that affect the car’s per-

formance, such as speed, reward, traffic, and action. The edges represent causal

relationships that are updated in real-time based on the data and feedback that

the car receives. For example, the edge from speed to reward indicates that the

car’s speed affects its reward, and the edge from traffic to speed indicates that

the traffic affects the car’s speed.

7.2 Generating hypothetical scenarios with a counterfac-

tual engine

We use a counterfactual engine to generate hypothetical scenarios that could

have happened if the car had taken a different action or faced a different situa-

tion, and compared them with the actual outcomes.
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7.3 Generating hypothetical scenarios with a counterfac-

tual engine

We use a counterfactual engine to generate hypothetical scenarios that could

have happened if the car had taken a different action or faced a different situa-

tion, and compared them with the actual outcomes.

Action 1

Action 2

S1

S2

Reward 1

Reward 2

Actual Actual

CF CF

Counterfactual engine

Nodes: actions, situations, rewards

Edges: scenarios

This diagram shows a simple example of a counterfactual engine that gen-

erates hypothetical scenarios that could have happened if the car had taken a

different action or faced a different situation. CF refers to Counterfactual, S1

refers to Scenario 1 and S2 refers to Scenario 2. The nodes represent actions,

situations, and rewards that are relevant for the car’s performance. The edges

represent scenarios that are either actual or counterfactual. For example, the

edge from action 1 to situation 1 indicates that the car actually took action

1 and faced situation 1, and the edge from situation 1 to reward 1 indicates

that the car actually received reward 1 as a result. The edge from action 2 to

situation 2 indicates that the car could have taken action 2 and faced situation

2 instead, and the edge from situation 2 to reward 2 indicates that the car could

have received reward 2 as a result.

This diagram shows a simple example of a counterfactual engine that gen-

erates hypothetical scenarios that could have happened if the car had taken

a different action or faced a different situation. The nodes represent actions,

situations, and rewards that are relevant for the car’s performance. The edges

represent scenarios that are either actual or counterfactual. For example, the

edge from action 1 to situation 1 indicates that the car actually took action
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1 and faced situation 1, and the edge from situation 1 to reward 1 indicates

that the car actually received reward 1 as a result. The edge from action 2 to

situation 2 indicates that the car could have taken action 2 and faced situation

2 instead, and the edge from situation 2 to reward 2 indicates that the car could

have received reward 2 as a result.

7.4 Natural experiment detector

(3) A natural experiment detector to identify situations where natural exper-

iments occur using anomaly detection methods that can detect changes and

outliers in data.

Data Anomaly Natural experiment
Detect Identify

Natural experiment detector

Nodes: data, anomaly, natural experiment

Edges: detection and identification methods

This diagram shows a simple example of a natural experiment detector that

identifies situations where natural experiments occur using anomaly detection

methods. The nodes represent data, anomaly, and natural experiment that are

relevant for causal inference. The edges represent detection and identification

methods that are used to find natural experiments. For example, the edge

from data to anomaly indicates that the detector uses some anomaly detection

methods to detect changes and outliers in the data, and the edge from anomaly

to natural experiment indicates that the detector uses some causal inference

methods to identify whether the anomaly corresponds to a natural experiment

or not.
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