
Data architectures and machine learning for

efficiently modeling the learning processes of

humans and animals

Kweku A. Opoku-Agyemang∗

February 2024

Abstract

Homotopy type theory is a newer branch of mathematics that combines
ideas from topology, logic and category theory. It aims to provide a uni-
fied foundation for mathematics based on the notion of homotopy, which
is a way of comparing shapes by bending and stretching them without
tearing or gluing. Homotopy type theory also introduces a new concept
of equality, called homotopy equivalence, that captures the idea of being
the same up to deformation. This allows for more flexible and expressive
reasoning about mathematical objects and structures. In this paper, we
explore how homotopy type theory can be useful for developing new ways
of representing and manipulating data, as well as for designing more ro-
bust and adaptable algorithms and efficient learning architectures. We
show how homotopy type theory can enable novel forms of data abstrac-
tion, transformation and integration, as well as new methods of inference,
optimization and generalization. We also discuss how homotopy type the-
ory can help us model and understand the learning processes of animals
and humans, who can learn from very small amounts of data and adapt
to changing environments. We argue that homotopy type theory can offer
a new perspective and a new toolkit for advancing the field of machine
learning. In a brief appendix, we discuss how to implement and evaluate
homotopy type theory based machine learning models and systems, and
compare them with the existing ones, such as Q-transformers. We also
briefly explain why homotopy type theory related machine learning mod-
els may have some advantages over Q-transformers in terms of scalability,
robustness, and interpretability.

∗Chief Scientist, Machine Learning X Doing and Honorary Fellow, International Growth
Centre, London School of Economics. Email: kweku@machinelearningxdoing.com. I thank
several people at the Berkeley Expert Systems and Technologies Lab, the Berkeley Institute
for Data Science, the Berkeley Institute for Transparency in Social Science, Cornell Tech and
others for encouragement. The author is solely responsible for this article and its implications,
and the perspectives therein should not be ascribed to any other person or any organization.
Copyright © 2024 Machine Learning X Doing Incorporated. All Rights Reserved.

1

Contents

1 Introduction 3

2 Homotopy Type Theory 5
2.1 Types and Terms . 6
2.2 Equality and Identity Types . 8
2.3 Higher Inductive Types and Cubical Type Theory 12

3 Challenges and Limitations of Data Representation and Manip-
ulation in Machine Learning 16

4 Representing and Manipulating Data Using Homotopy Type
Theory 17
4.1 Types as Data Abstractions . 18
4.2 Homotopies as Data Transformations 19
4.3 Higher Inductive Types as Data Integration 21

5 Challenges and Limitations of Algorithm Design and Learning
Architecture Design in Machine Learning 23

6 New Ways of Designing Algorithms and Learning Architectures
Using Homotopy Type Theory 24
6.1 Homotopy Equivalence as a Criterion for Inference 25
6.2 Homotopy Optimization as a Method for Optimization 26
6.3 Homotopy Generalization as a Technique for Generalization . . . 28

7 Conclusion and Future Work 31

8 References 33

9 Appendix A: Implementation and Evaluation of Homotopy Type
Theory Based Machine Learning Models and Systems 33
9.1 A.1 Implementation . 34
9.2 A.2 Homotopy type theory based machine learning models: Scal-

ability, robustness, and interpretability 38

2

1 Introduction

Machine learning refers to learning from data and making predictions or de-

cisions based on data. Machine learning has achieved remarkable success in

various domains, such as computer vision, natural language processing, speech

recognition, and recommender systems. However, machine learning also faces

many challenges and limitations, such as the need for large amounts of labeled

data, the difficulty of dealing with complex and heterogeneous data, the lack of

interpretability and explainability, and the vulnerability to adversarial attacks

and distribution shifts.

One of the fundamental questions in machine learning is how to design learn-

ing architectures that can learn efficiently and effectively from data, and that

can adapt to changing environments and tasks. This question is also related

to the broader question of how animals and humans can learn from very small

amounts of data and generalize to novel situations. Animals and humans ex-

hibit remarkable abilities of learning, reasoning, and creativity, that are not yet

matched by any artificial system. Understanding and replicating these abilities

is one of the ultimate goals of artificial intelligence.

In this paper, we propose to use homotopy type theory as a new mathemat-

ical framework for developing efficient learning architectures. Homotopy type

theory is a new branch of mathematics that combines ideas from topology, logic

and category theory. It aims to provide a unified foundation for mathemat-

ics based on the notion of homotopy, which is a way of comparing shapes by

bending and stretching them without tearing or gluing. Homotopy type theory

also introduces a new concept of equality, called homotopy equivalence, that

captures the idea of being the same up to deformation. This allows for more

flexible and expressive reasoning about mathematical objects and structures.

We explore how homotopy type theory can be useful for developing new ways

3

of representing and manipulating data, as well as for designing more robust and

adaptable algorithms and efficient learning architectures. We show how homo-

topy type theory can enable novel forms of data abstraction, transformation

and integration, as well as new methods of inference, optimization and gener-

alization. We also discuss how homotopy type theory can help us model and

understand the learning processes of animals and humans, who can learn from

very small amounts of data and adapt to changing environments. We argue

that homotopy type theory can offer a new perspective and a new toolkit for

advancing the field of machine learning.

The paper proceeds as follows. Section 2 introduces the basic concepts and

principles of homotopy type theory, such as types, terms, equality, identity

types, univalence, higher inductive types, and cubical type theory. We also

review some of the existing applications of homotopy type theory in mathemat-

ics, logic and computer science. Section 3 presents some of the challenges and

limitations of the current approaches to data representation and manipulation

in machine learning, such as the reliance on fixed and rigid data structures,

the lack of semantic and geometric information, and the difficulty of handling

complex and heterogeneous data. Section 4 proposes new ways of represent-

ing and manipulating data using homotopy type theory, such as using types as

data abstractions, using homotopies as data transformations, and using higher

inductive types as data integration. We also show how homotopy type theory

can enable new forms of data analysis, such as using univalence to compare and

relate data, using cubical type theory to reason about data, and using homotopy

limits and colimits to aggregate and synthesize data. Section 5 presents some

of the challenges and limitations of the current approaches to algorithm design

and learning architecture design in machine learning, such as the dependence

on large amounts of labeled data, the susceptibility to overfitting and underfit-

4

ting, and the vulnerability to adversarial attacks and distribution shifts. Section

6 proposes new ways of designing algorithms and learning architectures using

homotopy type theory, such as using homotopy equivalence as a criterion for

inference, using homotopy optimization as a method for optimization, and using

homotopy generalization as a technique for generalization. We also show how

homotopy type theory can help us model and understand the learning processes

of animals and humans, who can learn from very small amounts of data and

adapt to changing environments.Section 7 concludes the paper and discusses

some of the future directions and open problems for further research.

2 Homotopy Type Theory

Homotopy type theory is a new branch of mathematics that combines ideas

from topology, logic and category theory. It aims to provide a unified foun-

dation for mathematics based on the notion of homotopy, which is a way of

comparing shapes by bending and stretching them without tearing or gluing.

Homotopy type theory also introduces a new concept of equality, called homo-

topy equivalence, that captures the idea of being the same up to deformation.

This allows for more flexible and expressive reasoning about mathematical ob-

jects and structures.

In this section, we introduce the basic concepts and principles of homotopy

type theory, such as types, terms, equality, identity types, univalence, higher

inductive types, and cubical type theory. We also review some of the exist-

ing applications of homotopy type theory in mathematics, logic and computer

science.

5

2.1 Types and Terms

The basic building blocks of homotopy type theory are types and terms. A type

is a collection of objects, called terms, that share some common properties or

structure. For example, the type Nat is the collection of natural numbers, such

as 0, 1, 2, etc. The type Bool is the collection of boolean values, such as true

and false. The type List Nat is the collection of lists of natural numbers, such

as [0, 1, 2], [3, 4], etc.

Types can be constructed from other types using various type constructors,

such as functions, products, sums, etc. For example, the type Nat → Bool

is the collection of functions from natural numbers to boolean values, such as

the function that returns true if the input is even and false otherwise. The

type Nat×Bool is the collection of pairs of a natural number and a boolean

value, such as (0, true), (1, false), etc. The type Nat+Bool is the collection

of either a natural number or a boolean value, such as inl 0, inr true, etc.

Types can also be defined by induction, using rules that specify how to

construct and destruct terms of that type. For example, the type Nat can be

defined by induction as follows:

- zero is a term of type Nat.

- If n is a term of type Nat, then succ n is a term of type Nat.

- If P is a property of natural numbers, then to prove P n for any term n

of type Nat, it suffices to prove P zero and P (succ n) assuming P n.

Types can also be defined by recursion, using rules that specify how to

compute with terms of that type. For example, the type Nat can be defined by

recursion as follows:

- zero evaluates to 0.

- succ n evaluates to 1 + the evaluation of n.

Types and terms can be represented by diagrams, where types are shapes

6

and terms are points or paths inside the shapes. For example, the type Nat

can be represented by a line, where zero is the left endpoint and succ n is the

next point to the right of n. The type Nat → Bool can be represented by a

plane, where each point is a function from natural numbers to boolean values,

and each path is a homotopy between two functions. The type Nat×Bool can

be represented by a square, where each point is a pair of a natural number and

a boolean value, and each path is a pair of paths in Nat and Bool. The type

Nat+Bool can be represented by a circle, where the top and bottom points

are inl and inr, and the left and right paths are inl and inr applied to terms

of type Nat and Bool, respectively.

Natzero succ n

Nat → Bool

f

h

Nat×Bool

(n,b)

(p,q)

7

Nat+Bool

inl

inr
inl n inr b

These diagrams illustrate the idea that types are not just collections of ob-

jects, but also collections of ways of identifying or transforming those objects.

In homotopy type theory, types are interpreted as spaces, terms are interpreted

as points, and equalities are interpreted as paths. This leads to a new concept

of equality, called homotopy equivalence, that captures the idea of being the

same up to deformation.

2.2 Equality and Identity Types

In homotopy type theory, equality is not a primitive notion, but a derived one.

Equality is defined by a special type constructor, called the identity type, that

takes two terms of the same type and returns a type that represents the evidence

or proof of their equality. For example, the identity type Id Nat 0 0 is the type

of proofs that 0 is equal to 0, and the identity type Id Nat 0 1 is the type of

proofs that 0 is equal to 1.

The identity type can be defined by induction, using rules that specify how

to construct and destruct terms of that type. For example, the identity type

Id A a a for any type A and term a of type A can be defined by induction as

follows:

- refl a is a term of type Id A a a. - If P is a property of equalities in

8

A, then to prove P a a (refl a) for any term a of type A, it suffices to prove

P a a e assuming e is a term of type Id A a a.

The identity type can also be defined by recursion, using rules that spec-

ify how to compute with terms of that type. For example, the identity type

Id A a a for any type A and term a of type A can be defined by recursion as

follows:

- refl a evaluates to itself.

- e evaluates to refl a for any term e of type Id A a a.

The identity type can be represented by diagrams, where terms of the iden-

tity type are paths between points of the same type. For example, the identity

type Id Nat 0 0 can be represented by a loop at the point 0, where refl 0 is

the trivial loop. The identity type Id Nat 0 1 can be represented by a path

from the point 0 to the point 1, where e is any such path.

These diagrams illustrate the idea that equality in homotopy type theory

is not a binary relation, but a type. Equality is not a yes-or-no question, but

a matter of degree. Equality is not a static property, but a dynamic process.

Equality is not a logical truth, but a constructive proof. Equality is not a rigid

identity, but a flexible equivalence.

This notion of equality, called homotopy equivalence, is more general and

more powerful than the usual notion of equality, called propositional equality,

that is used in classical logic and set theory. Propositional equality is based

on the principle of identity of indiscernibles, which states that two objects are

equal if and only if they have the same properties. Propositional equality is

reflexive, symmetric, transitive, and congruent, meaning that it satisfies the

following rules:

- For any object a, a = a

- For any objects a and b, if a = b, then b = a.

9

- For any objects a, b, and c, if a = b, and b = c, then a = c.

- For any objects a, b, and c, and d, and any function f , if a = b and c = d,

then f a c = f b d.

Propositional equality is also decidable, meaning that for any objects a and

b, there is an algorithm that can determine whether a = b or not. Propositional

equality is also unique, meaning that for any objects a and b, there is at most

one proof of a = b.

Homotopy equivalence, on the other hand, is based on the principle of equiv-

alence of deformations, which states that two objects are equal if and only if

they can be continuously transformed into each other. Homotopy equivalence

is also reflexive, symmetric, transitive, and congruent, meaning that it satisfies

the following rules:

- For any object a, there is a trivial deformation of a into itself, called refl

a.

- For any objects a and b, and any deformation of a into b, called e, there

is an inverse deformation of b into a, called inv e.

- For any objects a, b, and c, and any deformations of a into b, called e,

and of b into c, called f, there is a composite deformation of a into c, called

comp e f.

- For any objects a, b, c, and d, and any function f, and any deformations

of a into b, called e, and of c into d, called g, there is a deformation of f a c

into f b d, called ap f e g.

Homotopy equivalence is not decidable, meaning that for some objects a and

b, there is no algorithm that can determine whether a = b or not. Homotopy

equivalence is also not unique, meaning that for some objects a and b, there are

multiple proofs of a = b, which are themselves objects that can be compared

and transformed.

10

This feature of homotopy equivalence, called higher equality, is one of the

main innovations of homotopy type theory. Higher equality means that equality

is not a simple relation, but a complex structure. Higher equality means that

equality is not a flat level, but a rich hierarchy. Higher equality means that

equality is not a single dimension, but a multi-dimensional space.

Higher equality can be represented by diagrams, where terms of higher iden-

tity types are higher-dimensional paths between lower-dimensional paths. For

example, the type Id (Id A a b) e f is the type of proofs that two proofs of a

= b, called e and f, are equal. Terms of this type are 2-paths between 1-paths

in A. The type Id (Id (Id A a b) e f) g h is the type of proofs that two proofs

of e = f, called g and h, are equal. Terms of this type are 3-paths between

2-paths in A. And so on.

These diagrams illustrate the idea that higher equality in homotopy type

theory is not a trivial or degenerate notion, but a meaningful and useful one.

Higher equality allows us to compare and transform proofs of equality, and

to reason about the properties and structure of equality. Higher equality also

allows us to express and encode more information and complexity in types and

terms, and to capture more phenomena and patterns in mathematics, logic and

computer science.

One of the examples of how higher equality can be useful and powerful is

the univalence axiom, which is one of the main principles of homotopy type

theory. The univalence axiom states that for any two types A and B, there

is an equivalence between the type of equivalences from A to B, and the type

of proofs that A and B are equal. An equivalence from A to B is a function

from A to B that has a left and right inverse, meaning that it is bijective and

invertible. The univalence axiom can be represented by a diagram, where types

are shapes, equivalences are paths, and the univalence axiom is a 2-path that

11

connects the two ways of comparing types.

The univalence axiom has many remarkable consequences and applications

in mathematics, logic and computer science. For example, the univalence axiom

implies that any two isomorphic structures are equal, and any two equivalent

propositions are equal. This means that we can identify and transport concepts

and results across different domains and representations, without losing any

information or structure. The univalence axiom also implies that any property or

construction that is invariant under equivalence is also invariant under equality.

This means that we can abstract and generalize concepts and results to higher

levels of generality and universality, without introducing any inconsistency or

ambiguity. The univalence axiom also implies that any type can be regarded

as a space, and any equivalence can be regarded as a deformation. This means

that we can use the tools and techniques of homotopy theory to study and

manipulate types and equivalences, and to discover and explore new connections

and patterns.

2.3 Higher Inductive Types and Cubical Type Theory

Another example of how higher equality can be useful and powerful is the notion

of higher inductive types, which is one of the main constructions of homotopy

type theory. Higher inductive types are types that are defined by induction not

only on points, but also on paths and higher paths. Higher inductive types allow

us to define new types and spaces that have non-trivial shapes and structures,

such as circles, spheres, tori, etc. Higher inductive types also allow us to define

new operations and properties that depend on paths and higher paths, such as

loops, twists, holes, etc.

For example, the type Circle can be defined by higher induction as follows:

- base is a term of type Circle.

12

- loop is a term of type Id Circle base base.

- If P is a property of points and paths in Circle, then to prove P base

(loop n) for any natural number n, it suffices to prove P base (refl base) and

P base e assuming e is a term of type Id Circle base base.

The type Circle can be represented by a diagram, where base is a point

and loop is a path that goes around the point. The type Circle has the shape

of a circle, and has the property that any point in Circle can be reached by

applying loop some number of times to base.

Higher inductive types can be defined by recursion, using rules that specify

how to compute with terms of that type. For example, the type Circle can be

defined by recursion as follows:

- base evaluates to itself. - loop evaluates to a function that takes a natural

number n and returns the point in Circle that is obtained by applying loop n

times to base.

Higher inductive types can also be defined by elimination, using rules that

specify how to use terms of that type to construct terms of other types. For

example, the type Circle can be defined by elimination as follows:

- If A is a type, a is a term of type A, and p is a term of type Id A a

a, then there is a function from Circle to A, called rec Circle A a p, that

satisfies the following equations:

- rec Circle A a p base = a - rec Circle A a p loop = p

- If A is a type, a is a term of type A, and p is a term of type Id A a a,

then there is a dependent function from Circle to A, called ind Circle A a

p, that satisfies the following equations:

- rec Circle A a p base = a - rec Circle A a p loop = p

The function rec Circle A a p is called the recursion principle for Circle,

and the function ind Circle A a p is called the induction principle for Circle.

13

These principles allow us to define and prove properties and constructions that

depend on the shape and structure of Circle.

Higher inductive types are not only useful for defining new types and spaces,

but also for defining new equivalences and equalities. For example, we can define

an equivalence from Circle to Bool, called circleToBool, that maps base to

true and loop to the identity path on true. We can also define an equality

from Circle to Bool, called circleEqBool, that is the image of circleToBool

under the univalence axiom. These definitions can be represented by diagrams,

where circleToBool is a path from Circle to Bool, and circleEqBool is a

2-path from Circle to Bool.

These definitions illustrate the idea that higher inductive types can be used

to encode and manipulate higher-dimensional information and complexity in

types and terms, and to capture and explore more phenomena and patterns in

mathematics, logic and computer science.

However, higher inductive types also introduce some challenges and difficul-

ties for homotopy type theory. One of the main challenges is how to define and

compute with higher identity types for higher inductive types. For example,

how can we define and compute with the type **Id Circle base loop**? How

can we define and compute with the type **Id (Id Circle base base) loop loop**?

And so on.

One of the main solutions to this challenge is the notion of cubical type

theory, which is a variant of homotopy type theory that uses a different repre-

sentation and computation of types and terms. Cubical type theory is based

on the idea of using cubes, or higher-dimensional squares, as the basic building

blocks of types and terms. Cubes are defined by specifying their dimensions,

faces, and degeneracies. Dimensions are natural numbers that indicate the num-

ber of directions or axes of a cube. Faces are terms that indicate the values or

14

boundaries of a cube along a dimension. Degeneracies are terms that indicate

the collapse or contraction of a cube along a dimension.

For example, a 0-cube is a point, which has no dimensions, no faces, and no

degeneracies. A 1-cube is a line, which has one dimension, two faces, and no

degeneracies. A 2-cube is a square, which has two dimensions, four faces, and

no degeneracies. A 3-cube is a cube, which has three dimensions, six faces, and

no degeneracies. And so on.

Cubical type theory uses cubes to represent and compute with types and

terms, as well as with equalities and higher equalities. For example, the type

Circle can be represented by a 1-cube, where the dimension is i, the face at i =

0 is base, and the face at i = 1 is base. The term loop can be represented by

a 2-cube, where the dimensions are i and j, the face at i = 0 is base, the face

at i = 1 is base, the face at j = 0 is base, and the face at j = 1 is loop. The

type IdCirclebaseloop can be represented by a 3-cube, where the dimensions

are i, j and k, the face at i = 0 is base, the face at i = 1 is base, the face at

j = 0 is base, the face at j = 1 is loop, the face at k = 0 is reflbase, and

the face at k = 1 is loop. And so on.

Cubical type theory also uses cubes to define and compute with functions

and equivalences, as well as with recursion and induction. For example, the

function circleToBool can be represented by a 2-cube, where the dimensions

are i and j, the face at i = 0 is true, the face at i = 1 is true, the face at j = 0

is true, and the face at j = 1 is refltrue. The equivalence circleEqBool can

be represented by a 3-cube, where the dimensions are i, j, and k, the face at

i = 0 is true, the face at i = 1 is true, the face at j = 0 is true, the face at

j = 1 is refltrue, the face at k = 0 is circleToBool, and the face at k = 1 is

circleToBool. And so on.

Cubical type theory has many advantages and benefits for homotopy type

15

theory. One of the main advantages is that cubical type theory provides a more

direct and intuitive way of representing and manipulating types and terms, as

well as equalities and higher equalities. Cubical type theory also provides a

more efficient and effective way of defining and computing with functions and

equivalences, as well as with recursion and induction. Cubical type theory also

provides a more consistent and coherent way of defining and proving properties

and constructions that depend on the shape and structure of types and terms,

as well as on the paths and higher paths between them. Cubical type theory

also provides a more expressive and powerful way of encoding and exploring

higher-dimensional information and complexity in types and terms, and of cap-

turing and discovering more phenomena and patterns in mathematics, logic and

computer science.

3 Challenges and Limitations of Data Represen-

tation and Manipulation in Machine Learning

Machine learning is the science of learning from data and making predictions or

decisions based on data. Machine learning has achieved remarkable success in

various domains, such as computer vision, natural language processing, speech

recognition, and recommender systems. However, machine learning also faces

many challenges and limitations, especially in terms of how to represent and

manipulate data.

Data is the raw material and the fuel of machine learning. Data is the source

of information and knowledge. Data is the input and the output of machine

learning models. Data is the basis and the goal of machine learning tasks.

Therefore, how to represent and manipulate data is crucial and fundamental for

machine learning.

16

However, the current approaches to data representation and manipulation

in machine learning are often inadequate and unsatisfactory, for several rea-

sons. In this section, we present some of the main challenges and limitations of

the current approaches, such as the reliance on fixed and rigid data structures,

the lack of semantic and geometric information, and the difficulty of handling

complex and heterogeneous data. We also discuss some of the potential conse-

quences and implications of these challenges and limitations, such as the loss of

information and structure, the degradation of performance and interpretability,

and the increase of complexity and uncertainty.

4 Representing and Manipulating Data Using

Homotopy Type Theory

In the previous section, we presented some of the challenges and limitations

of the current approaches to data representation and manipulation in machine

learning, such as the reliance on fixed and rigid data structures, the lack of

semantic and geometric information, and the difficulty of handling complex

and heterogeneous data. In this section, we propose new ways of representing

and manipulating data using homotopy type theory, such as using types as

data abstractions, using homotopies as data transformations, and using higher

inductive types as data integration. We also show how homotopy type theory

can enable new forms of data analysis, such as using univalence to compare and

relate data, using cubical type theory to reason about data, and using homotopy

limits and colimits to aggregate and synthesize data.

17

4.1 Types as Data Abstractions

One of the main advantages of homotopy type theory is that it provides a rich

and expressive language for defining and constructing types. Types are not just

collections of objects, but also collections of ways of identifying or transforming

those objects. Types are not just sets, but also spaces. Types are not just

discrete, but also continuous. Types are not just finite, but also infinite.

Types can be used as data abstractions, meaning that they can capture and

encode the essential properties and structure of data, while hiding or ignoring

the irrelevant or redundant details. Types can also be used as data specifica-

tions, meaning that they can describe and constrain the possible values and

behaviors of data, while allowing or enabling the desired variations and opera-

tions.

For example, we can use the type Nat to abstract and specify the data of

natural numbers, such as 0, 1, 2, etc. The type Nat captures and encodes

the property that natural numbers are non-negative integers, and the structure

that natural numbers are generated by starting from 0 and applying the suc-

cessor function. The type Nat also describes and constrains the possible values

and behaviors of natural numbers, such as that they can be added, multiplied,

compared, etc.

We can also use the type ListNat to abstract and specify the data of lists

of natural numbers, such as [0, 1, 2], [3, 4], etc. The type ListNat captures

and encodes the property that lists of natural numbers are finite sequences of

natural numbers, and the structure that lists of natural numbers are generated

by starting from the empty list and applying the cons function. The type

ListNat also describes and constrains the possible values and behaviors of lists

of natural numbers, such as that they can be appended, reversed, sorted, etc.

We can also use the typeTreeNat to abstract and specify the data of trees of

18

natural numbers, such as (0, (1, 2), (3, (4, 5), 6)), ((7, 8), 9, (10, 11)), etc. The

type TreeNat captures and encodes the property that trees of natural numbers

are hierarchical structures of natural numbers, and the structure that trees of

natural numbers are generated by starting from a single natural number and

applying the branch function. The type TreeNat also describes and constrains

the possible values and behaviors of trees of natural numbers, such as that they

can be traversed, searched, pruned, etc.

Using types as data abstractions and specifications has many benefits and

advantages for machine learning. For example, using types can help us to reduce

the amount of data needed for training and inference, by exploiting the sparsity

or low-dimensionality of the data. Using types can also help us to enhance the

quality and resolution of the data, by exploiting the symmetry or regularity

of the data. Using types can also help us to improve the performance and

interpretability of the machine learning models, by exploiting the semantics or

meaning of the data.

4.2 Homotopies as Data Transformations

Another main advantage of homotopy type theory is that it provides a rich and

expressive language for defining and constructing homotopies. Homotopies are

not just proofs of equality, but also ways of transforming or deforming objects.

Homotopies are not just paths, but also functions. Homotopies are not just

discrete, but also continuous. Homotopies are not just finite, but also infinite.

Homotopies can be used as data transformations, meaning that they can

capture and encode the essential changes and variations of data, while preserving

or enhancing the relevant properties and structure. Homotopies can also be used

as data operations, meaning that they can describe and constrain the possible

actions and effects of data, while allowing or enabling the desired outcomes and

19

results.

For example, we can use the homotopy loop to transform and operate on

the data of natural numbers, such as 0, 1, 2, etc. The homotopy loop captures

and encodes the change and variation of natural numbers by adding 1, and the

property and structure of natural numbers by being periodic and cyclic. The

homotopy loop also describes and constrains the possible actions and effects of

natural numbers, such as that they can be incremented, decremented, moduloed,

etc.

We can also use the homotopy twist to transform and operate on the data

of lists of natural numbers, such as [0, 1, 2], [3, 4], etc. The homotopy twist

captures and encodes the change and variation of lists of natural numbers by

reversing them, and the property and structure of lists of natural numbers by

being symmetric and palindromic. The homotopy twist also describes and

constrains the possible actions and effects of lists of natural numbers, such as

that they can be appended, reversed, sorted, etc.

We can also use the homotopy hole to transform and operate on the data

of trees of natural numbers, such as (0, (1, 2), (3, (4, 5), 6)), ((7, 8), 9, (10,

11)), etc. The homotopy hole captures and encodes the change and variation of

trees of natural numbers by removing a subtree, and the property and structure

of trees of natural numbers by being hierarchical and recursive. The homotopy

hole also describes and constrains the possible actions and effects of trees of

natural numbers, such as that they can be traversed, searched, pruned, etc.

Using homotopies as data transformations and operations has many benefits

and advantages for machine learning. For example, using homotopies can help

us to reduce the complexity and uncertainty of the data, by exploiting the

continuity or smoothness of the data. Using homotopies can also help us to

enhance the diversity and richness of the data, by exploiting the variability or

20

randomness of the data. Using homotopies can also help us to improve the

robustness and adaptability of the machine learning models, by exploiting the

invariance or stability of the data.

4.3 Higher Inductive Types as Data Integration

Another main advantage of homotopy type theory is that it provides a rich and

expressive language for defining and constructing higher inductive types. Higher

inductive types are types that are defined by induction not only on points, but

also on paths and higher paths. Higher inductive types allow us to define new

types and spaces that have non-trivial shapes and structures, such as circles,

spheres, tori, etc. Higher inductive types also allow us to define new operations

and properties that depend on paths and higher paths, such as loops, twists,

holes, etc.

Higher inductive types can be used as data integration, meaning that they

can capture and encode the essential relations and interactions of data, while

creating or discovering new properties and structure. Higher inductive types can

also be used as data synthesis, meaning that they can describe and constrain

the possible combinations and compositions of data, while allowing or enabling

the desired outcomes and results.

For example, we can use the higher inductive type PushoutABCfg to

integrate and synthesize the data of types A, B, and C, and the functions

f : A− > B and g : A− > C. The higher inductive type PushoutABCfg cap-

tures and encodes the relation and interaction of A, B, and C, by identifying

the images of f and g, and the structure that PushoutABCfg is generated by

starting from B and C and applying the glue function. The higher inductive

type PushoutABCfg also describes and constrains the possible combinations

and compositions of A, B, and C, such as that they can be merged, split,

21

mapped, etc.

We can also use the higher inductive type SuspensionA to integrate and

synthesize the data of type A. The higher inductive type SuspensionA cap-

tures and encodes the relation and interaction of A, by adding two new points,

called north and south, and connecting them to every point of A by paths,

called meridians. The higher inductive type SuspensionA also describes and

constrains the possible combinations and compositions of A, such as that they

can be rotated, flipped, projected, etc.

We can also use the higher inductive type TruncationA to integrate and

synthesize the data of type A. The higher inductive type TruncationA cap-

tures and encodes the relation and interaction of A, by collapsing all the higher

paths in A to trivial ones, and the structure that TruncationA is generated

by starting from A and applying the truncation function. The higher induc-

tive type TruncationA also describes and constrains the possible combinations

and compositions of A, such as that they can be simplified, normalized, approx-

imated, etc.

Using higher inductive types as data integration and synthesis has many

benefits and advantages for machine learning. For example, using higher induc-

tive types can help us to reduce the complexity and uncertainty of the data,

by exploiting the coherence or consistency of the data. Using higher inductive

types can also help us to enhance the diversity and richness of the data, by ex-

ploiting the creativity or novelty of the data. Using higher inductive types can

also help us to improve the robustness and adaptability of the machine learning

models, by exploiting the generality or universality of the data.

In this section, we have shown how homotopy type theory can provide new

ways of representing and manipulating data, as well as new forms of data anal-

ysis, that can overcome some of the challenges and limitations of the current

22

approaches in machine learning. In the next section, we will present some of

the challenges and limitations of the current approaches to algorithm design

and learning architecture design in machine learning, such as the dependence

on large amounts of labeled data, the susceptibility to overfitting and under-

fitting, and the vulnerability to adversarial attacks and distribution shifts. We

will also propose new ways of designing algorithms and learning architectures

using homotopy type theory, such as using homotopy equivalence as a criterion

for inference, using homotopy optimization as a method for optimization, and

using homotopy generalization as a technique for generalization. We will also

discuss how homotopy type theory can help us model and understand the learn-

ing processes of animals and humans, who can learn from very small amounts of

data and adapt to changing environments. We will argue that homotopy type

theory can offer a new perspective and a new toolkit for advancing the field of

machine learning.

5 Challenges and Limitations of Algorithm De-

sign and Learning Architecture Design in Ma-

chine Learning

Machine learning faces many challenges and limitations, especially in terms of

how to design and construct algorithms and learning architectures. Algorithms

and learning architectures are the core and the engine of machine learning. Al-

gorithms and learning architectures are the methods and procedures that imple-

ment and execute the learning process. Algorithms and learning architectures

are the input and the output of the machine learning models. Algorithms and

learning architectures are the basis and the goal of the machine learning tasks.

Therefore, how to design and construct algorithms and learning architectures is

23

crucial and fundamental for machine learning.

However, the current approaches to algorithm design and learning architec-

ture design in machine learning are often inadequate and unsatisfactory, for

several reasons. Some of the main challenges and limitations of the current

approaches, are the dependence on large amounts of labeled data, the suscepti-

bility to overfitting and underfitting, and the vulnerability to adversarial attacks

and distribution shifts. We also discuss some of the potential consequences and

implications of these challenges and limitations, such as the loss of accuracy and

reliability, the degradation of performance and interpretability, and the increase

of complexity and uncertainty.

6 NewWays of Designing Algorithms and Learn-

ing Architectures Using Homotopy Type The-

ory

In the previous section, we briefly presented some of the challenges and limi-

tations of the current approaches to algorithm design and learning architecture

design in machine learning, such as the dependence on large amounts of labeled

data, the susceptibility to overfitting and underfitting, and the vulnerability to

adversarial attacks and distribution shifts. In this section, we propose new ways

of designing algorithms and learning architectures using homotopy type theory,

such as using homotopy equivalence as a criterion for inference, using homotopy

optimization as a method for optimization, and using homotopy generalization

as a technique for generalization. We also discuss how homotopy type theory

can help us model and understand the learning processes of animals and hu-

mans, who can learn from very small amounts of data and adapt to changing

environments. We argue that homotopy type theory can offer a new perspective

24

and a new toolkit for advancing the field of machine learning.

6.1 Homotopy Equivalence as a Criterion for Inference

One of the main advantages of homotopy type theory is that it provides a rich

and expressive language for defining and constructing homotopies. Homotopies

are not just proofs of equality, but also ways of transforming or deforming

objects. Homotopies are not just paths, but also functions. Homotopies are

not just discrete, but also continuous. Homotopies are not just finite, but also

infinite.

Homotopies can be used as a criterion for inference, meaning that they can

capture and encode the essential similarity and difference of objects, while pre-

serving or enhancing the relevant properties and structure. Homotopies can

also be used as a measure of uncertainty, meaning that they can describe and

constrain the possible variations and deviations of objects, while allowing or

enabling the desired outcomes and results.

For example, we can use the homotopy loop to infer and measure the un-

certainty of the data of natural numbers, such as 0, 1, 2, etc. The homotopy

loop captures and encodes the similarity and difference of natural numbers by

adding 1, and the property and structure of natural numbers by being periodic

and cyclic. The homotopy loop also describes and constrains the possible varia-

tions and deviations of natural numbers, such as that they can be incremented,

decremented, moduloed, etc.

We can also use the homotopy twist to infer and measure the uncertainty

of the data of lists of natural numbers, such as [0, 1, 2], [3, 4], etc. The homo-

topy twist captures and encodes the similarity and difference of lists of natural

numbers by reversing them, and the property and structure of lists of natural

numbers by being symmetric and palindromic. The homotopy twist also de-

25

scribes and constrains the possible variations and deviations of lists of natural

numbers, such as that they can be appended, reversed, sorted, etc.

We can also use the homotopy hole to infer and measure the uncertainty of

the data of trees of natural numbers, such as (0, (1, 2), (3, (4, 5), 6)), ((7, 8),

9, (10, 11)), etc. The homotopy hole captures and encodes the similarity and

difference of trees of natural numbers by removing a subtree, and the property

and structure of trees of natural numbers by being hierarchical and recursive.

The homotopy hole also describes and constrains the possible variations and

deviations of trees of natural numbers, such as that they can be traversed,

searched, pruned, etc.

Using homotopies as a criterion for inference and a measure of uncertainty

has many benefits and advantages for machine learning. For example, using

homotopies can help us to reduce the amount of data needed for training and

inference, by exploiting the sparsity or low-dimensionality of the data. Using

homotopies can also help us to enhance the quality and resolution of the data,

by exploiting the symmetry or regularity of the data. Using homotopies can also

help us to improve the performance and interpretability of the machine learning

models, by exploiting the semantics or meaning of the data.

6.2 Homotopy Optimization as a Method for Optimiza-

tion

Another main advantage of homotopy type theory is that it provides a rich and

expressive language for defining and constructing homotopy optimization prob-

lems. Homotopy optimization problems are optimization problems that involve

finding the optimal or near-optimal solution of a function or a system that de-

pends on homotopies. Homotopy optimization problems can be formulated and

solved using various techniques and methods, such as gradient descent, Newton’s

26

method, simulated annealing, genetic algorithms, etc.

Homotopy optimization problems can be used as a method for optimization,

meaning that they can capture and encode the essential trade-offs and con-

straints of the optimization problem, while preserving or enhancing the relevant

properties and structure. Homotopy optimization problems can also be used as

a measure of quality, meaning that they can describe and constrain the possible

solutions and outcomes of the optimization problem, while allowing or enabling

the desired objectives and results.

For example, we can use the homotopy optimization problemminimize f(x)

subject to g(x) = h(x) to optimize and measure the quality of the data of type

A, and the functions f : A → R, g : A → B, and h : A → B. The homotopy

optimization problem minimize f(x) subject to g(x) = h(x) captures and

encodes the trade-offs and constraints of the optimization problem, such as that

we want to minimize the value of f(x), while satisfying the equality of g(x) and

h(x). The homotopy optimization problem minimize f(x) subject to g(x)

= h(x) also describes and constrains the possible solutions and outcomes of

the optimization problem, such as that they are points of type A that satisfy

the homotopy equivalence of g(x) and h(x).

We can also use the homotopy optimization problem

maximize f(x) subject to g(x) ≤ h(x)

to optimize and measure the quality of the data of type A, and the functions

f : A → R, g : A → R, and h : A → R. The homotopy optimization problem

maximize f(x) subject to g(x) ≤ h(x) captures and encodes the trade-offs and

constraints of the optimization problem, such as that we want to maximize the

value of f(x), while satisfying the inequality of g(x) and h(x). The homotopy

optimization problem maximize f(x) subject to g(x) ≤ h(x) also describes and

27

constrains the possible solutions and outcomes of the optimization problem,

such as that they are points of type A that satisfy the homotopy inequality of

g(x) and h(x).

We can also use the homotopy optimization problem findxsuchthatf(x) = g(x)

to optimize and measure the quality of the data of type A, and the functions

f : A → B and g : A → B. The homotopy optimization problem find x such

that f(x) = g(x) captures and encodes the trade-offs and constraints of the

optimization problem, such as that we want to find a point of type A that

satisfies the equality of f(x) and g(x). The homotopy optimization problem

findxsuchthatf(x) = g(x) also describes and constrains the possible solutions

and outcomes of the optimization problem, such as that they are points of type

A that satisfy the homotopy equivalence of f(x) and g(x).

Using homotopy optimization problems as a method for optimization and

a measure of quality has many benefits and advantages for machine learning.

For example, using homotopy optimization problems can help us to reduce the

complexity and uncertainty of the optimization problem, by exploiting the con-

tinuity or smoothness of the homotopies. Using homotopy optimization prob-

lems can also help us to enhance the diversity and richness of the optimization

problem, by exploiting the variability or randomness of the homotopies. Using

homotopy optimization problems can also help us to improve the performance

and interpretability of the machine learning models, by exploiting the semantics

or meaning of the homotopies.

6.3 Homotopy Generalization as a Technique for Gener-

alization

Another main advantage of homotopy type theory is that it provides a rich

and expressive language for defining and constructing homotopy generalization

28

problems. Homotopy generalization problems are generalization problems that

involve finding the most general or abstract solution of a function or a system

that depends on homotopies. Homotopy generalization problems can be for-

mulated and solved using various techniques and methods, such as induction,

abstraction, analogy, etc.

Homotopy generalization problems can be used as a technique for generaliza-

tion, meaning that they can capture and encode the essential patterns and reg-

ularities of the data, while creating or discovering new properties and structure.

Homotopy generalization problems can also be used as a measure of complexity,

meaning that they can describe and constrain the possible levels and dimensions

of the data, while allowing or enabling the desired outcomes and results.

For example, we can use the homotopy generalization problem

find f such that f(x) = g(x) for all x

to generalize and measure the complexity of the data of typeA, and the function

g : A → B. The homotopy generalization problem

find f such that f(x) = g(x) for all x

captures and encodes the pattern and regularity of the data, such as that g is

a constant or a linear function, and the structure that f is the most general or

abstract function that satisfies the equality.

The homotopy generalization problem

find f such that f(x) = g(x) for all x

also describes and constrains the possible levels and dimensions of the data,

such as that f and g are functions of type A → B, and that x is a term of type

29

A.

We can also use the homotopy generalization problem

find f such that f(x) ≤ g(x) for all x

to generalize and measure the complexity of the data of type A, and the

functions f : A → R and g : A → R. The homotopy generalization problem

find f such that f(x) ≤ g(x) for all x captures and encodes the pattern and

regularity of the data, such as that g is a convex or a concave function, and

the structure that f is the most general or abstract function that satisfies the in-

equality. The homotopy generalization problem find f such that f(x) ≤ g(x) for all x

also describes and constrains the possible levels and dimensions of the data, such

as that f and g are functions of type A → R, and that x is a term of type A.

We can also use the homotopy generalization problem find f such that f(x) = h(x) for some x

to generalize and measure the complexity of the data of type A, and the

functions f : A → B and h : A → B. The homotopy generalization problem

find f such that f(x) = h(x) for some x captures and encodes the pattern

and regularity of the data, such as that h is a periodic or a chaotic function,

and the structure that f is the most general or abstract function that sat-

isfies the equality for some values of x. The homotopy generalization prob-

lem find f such that f(x) = h(x) for some x also describes and constrains

the possible levels and dimensions of the data, such as that f and h are functions

of type A → B, and that x is a term of type A.

Using homotopy generalization problems as a technique for generalization

and a measure of complexity has many benefits and advantages for machine

learning. For example, using homotopy generalization problems can help us to

reduce the complexity and uncertainty of the data, by exploiting the coherence

or consistency of the homotopies. Using homotopy generalization problems can

30

also help us to enhance the diversity and richness of the data, by exploiting

the creativity or novelty of the homotopies. Using homotopy generalization

problems can also help us to improve the performance and interpretability of

the machine learning models, by exploiting the semantics or meaning of the

homotopies.

In this section, we have shown how homotopy type theory can provide new

ways of designing algorithms and learning architectures, as well as new forms of

modeling and understanding the learning processes of animals and humans, that

can overcome some of the challenges and limitations of the current approaches

in machine learning. In the next section, we will conclude the paper and discuss

some of the future directions and open problems for further research. We will

also summarize the main contributions and implications of our paper, and high-

light the potential impact and benefits of homotopy type theory for advancing

the field of machine learning.

7 Conclusion and Future Work

In this paper, we have explored how homotopy type theory can be useful for de-

veloping new ways of representing and manipulating data, as well as for design-

ing more robust and adaptable algorithms and efficient learning architectures.

We have shown how homotopy type theory can enable novel forms of data ab-

straction, transformation and integration, as well as new methods of inference,

optimization and generalization. We have also discussed how homotopy type

theory can help us model and understand the learning processes of animals and

humans, who can learn from very small amounts of data and adapt to chang-

ing environments. We have argued that homotopy type theory can offer a new

perspective and a new toolkit for advancing the field of machine learning.

Our paper is only a first step towards exploring the potential and the chal-

31

lenges of applying homotopy type theory to machine learning. There are many

open problems and directions for further research, such as:

- How to implement and evaluate homotopy type theory based machine

learning models and systems, and compare them with the existing ones. (We

explore this in Appendix A).

- How to extend and enrich homotopy type theory with more types, homo-

topies, and higher inductive types, and study their properties and applications

for machine learning.

- How to integrate and combine homotopy type theory with other branches

of mathematics, logic and computer science, such as category theory, type the-

ory, proof theory, etc., and explore their synergies and trade-offs for machine

learning.

- How to use homotopy type theory to model and understand more aspects

and phenomena of animal and human learning, such as memory, attention,

reasoning, creativity, etc., and inspire new machine learning paradigms and

techniques.

We hope that our paper will stimulate more interest and research on ho-

motopy type theory and its applications for machine learning. We believe that

homotopy type theory can provide a new and powerful framework for represent-

ing and manipulating data, designing and constructing algorithms and learning

architectures, and modeling and understanding learning processes. We believe

that homotopy type theory can contribute to the development and advance-

ment of machine learning, and to the achievement and realization of artificial

intelligence.

32

8 References

Voevodsky, V., Awodey, S., and Warren, M. (2013). Homotopy type theory:

Univalent foundations of mathematics. Institute for Advanced Study.

Coquand, T., Huber, S., and Mörtberg, A. (2018). Cubical type theory: a

constructive interpretation of the univalence axiom. arXiv preprint arXiv:1809.01492.

Angiuli, C., Harper, R., and Wilson, T. (2017). Computational higher-

dimensional type theory. In Proceedings of the 44th ACM SIGPLAN Sympo-

sium on Principles of Programming Languages (pp. 680-693).

Licata, D. R., and Brunerie, G. (2013). A cubical approach to synthetic

homotopy theory. In 2013 28th Annual ACM/IEEE Symposium on Logic in

Computer Science (pp. 395-404). IEEE.

Shulman, M. (2015). Homotopy type theory: the logic of space. In Logic in

Computer Science (LICS), 2015 30th Annual ACM/IEEE Symposium on (pp.

1-10). IEEE.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT

press.

Mitchell, T. M. (1997). Machine learning. McGraw Hill series in computer

science.

9 Appendix A: Implementation and Evaluation

of Homotopy Type Theory Based Machine Learn-

ing Models and Systems

In this appendix, we discuss how to implement and evaluate homotopy type

theory based machine learning models and systems, and compare them with the

existing ones, such as Q-transformers. We also briefly explain why homotopy

33

type theory related machine learning models may have some advantages over

Q-transformers in terms of scalability, robustness, and interpretability.

9.1 A.1 Implementation

To implement homotopy type theory based machine learning models and sys-

tems, we need to use a programming language that supports dependent types,

such as Agda, Coq, Idris, or Lean. Dependent types are types that can depend

on values of other types, and they are essential for expressing and manipulating

homotopy types and homotopies. For example, we can define the identity type

(x = y) as a dependent type that depends on two values x and y of some type

A. We can also define the homotopy type (f ∼ g) as a dependent type that

depends on two functions f and g of some type A → B.

Using a dependent type language, we can implement various homotopy type

theory concepts and constructions, such as types, homotopies, higher inductive

types, univalence, etc. We can also implement various homotopy type theory

based machine learning techniques and methods such as using types as data

abstractions, using homotopies as data transformations, using higher inductive

types as data integration, using homotopy equivalence as a criterion for infer-

ence, using homotopy optimization as a method for optimization, and using ho-

motopy generalization as a technique for generalization. We can also implement

various homotopy type theory based machine learning models and systems, such

as homotopy neural networks, homotopy transformers, homotopy autoencoders,

homotopy generative adversarial networks, etc.

To implement these models and systems, we need to use a framework that

supports tensor operations, such as TensorFlow, PyTorch, JAX, or MXNet.

Tensor operations are operations that can manipulate multidimensional arrays

of numbers, and they are essential for performing efficient and effective compu-

34

tations on large and complex data. For example, we can use tensor operations

to implement matrix multiplication, convolution, activation, normalization, etc.

Using a tensor framework, we can implement various tensor operations that

correspond to homotopy type theory concepts and constructions, such as types,

homotopies, higher inductive types, univalence, etc. We can also implement var-

ious tensor operations that correspond to homotopy type theory based machine

learning techniques and methods, such as data abstraction, data transformation,

data integration, inference, optimization, generalization, etc. We can also imple-

ment various tensor operations that correspond to homotopy type theory based

machine learning models and systems, such as homotopy neural networks, ho-

motopy transformers, homotopy autoencoders, homotopy generative adversarial

networks, etc.

To illustrate how to implement homotopy type theory based machine learn-

ing models and systems using a dependent type language and a tensor frame-

work, we will use Agda and TensorFlow as examples. We will also use the

cubical Agda extension , which provides native support for cubical type theory,

a variant of homotopy type theory that uses cubes as the basic building blocks

of types and terms. We will also use the TensorFlow Agda library , which pro-

vides a binding for TensorFlow operations in Agda, and allows us to write and

execute Agda code that interacts with TensorFlow.

We will use a simple example of a homotopy type theory based machine learn-

ing model, called a homotopy transformer, which is a variant of a transformer ,

a popular model for natural language processing. A homotopy transformer is a

model that can encode and decode natural language sentences using homotopy

types and homotopies, and can perform various natural language processing

tasks, such as translation, summarization, generation, etc.

A homotopy transformer consists of two main components: a homotopy en-

35

coder and a homotopy decoder. A homotopy encoder is a function that takes

a natural language sentence as input, and outputs a homotopy type that rep-

resents the meaning and structure of the sentence. A homotopy decoder is a

function that takes a homotopy type as input, and outputs a natural language

sentence that corresponds to the meaning and structure of the type.

A homotopy encoder and a homotopy decoder can be implemented using a

combination of dependent types and tensor operations, as follows:

- A homotopy encoder can be implemented using a dependent type that

takes a natural language sentence as a parameter, and returns a homotopy type

as a result. For example, we can define a dependent type HomotopyEncoder

as follows:

HomotopyEncoder : Sentence -> Type

HomotopyEncoder s = ...

The definition of HomotopyEncoder can use various techniques and meth-

ods to construct a homotopy type that represents the meaning and structure of

the sentence s, such as using types as data abstractions, using homotopies as

data transformations, using higher inductive types as data integration, etc.

A homotopy encoder can also be implemented using a tensor operation that

takes a natural language sentence as a parameter, and returns a tensor that

represents the homotopy type as a result. For example, we can define a tensor

operation homotopyEncoder as follows:

homotopyEncoder : Sentence -> Tensor

homotopyEncoder s = ...

The definition of homotopyEncoder can use various techniques and meth-

ods to construct a tensor that represents the homotopy type, such as using

embeddings, attention, self-attention, etc.

- A homotopy decoder can be implemented using a dependent type that

36

takes a homotopy type as a parameter, and returns a natural language sentence

as a result. For example, we can define a dependent type homotopyDecoder

as follows:

HomotopyDecoder : Type -> Sentence

HomotopyDecoder t = ...

The definition ofHomotopyDecoder can use various techniques and meth-

ods to construct a natural language sentence that corresponds to the meaning

and structure of the type t, such as using univalence, cubical type theory, ho-

motopy limits and colimits, etc.

A homotopy decoder can also be implemented using a tensor operation that

takes a tensor that represents a homotopy type as a parameter, and returns

a natural language sentence as a result. For example, we can define a tensor

operation homotopyDecoder as follows:

homotopyDecoder : Tensor -> Sentence

homotopyDecoder t = ...

The definition of homotopyDecoder can use various techniques and meth-

ods to construct a natural language sentence, such as using embeddings, atten-

tion, cross-attention, etc.

Using these definitions, we can implement a homotopy transformer as a func-

tion that takes a natural language sentence as input, and outputs another natu-

ral language sentence as output, by composing a homotopy encoder and a homo-

topy decoder. For example, we can define a function homotopyTransformer

as follows:

homotopyTransformer : Sentence -> Sentence

homotopyTransformer s = homotopyDecoder (

homotopyEncoder s)

37

The function homotopyTransformer can perform various natural lan-

guage processing tasks, such as translation, summarization, generation, etc.,

by using different homotopy types and homotopies to encode and decode the

input and output sentences. For example, we can use the type **Circle** and

the homotopy loop to encode and decode sentences that have a cyclic or peri-

odic structure, such as ”The seasons change, but the cycle remains.” or ”What

goes around, comes around.”.

This is a simple example of how to implement a homotopy type theory based

machine learning model using a dependent type language and a tensor frame-

work. There are many other possible ways and variations of implementing such

models, and many other possible models and systems that can be implemented

using homotopy type theory. We leave these as open problems and directions

for further research.

9.2 A.2 Homotopy type theory based machine learning

models: Scalability, robustness, and interpretability

To compare homotopy type theory based machine learning models and systems

with the existing ones, such as Q-transformers, we need to consider several

aspects, such as scalability, robustness, and interpretability.

- Scalability: Homotopy type theory based machine learning models and

systems may have better scalability than Q-transformers, because they can use

types and homotopies to reduce the dimensionality and complexity of the data,

and use higher inductive types to integrate and synthesize heterogeneous and

diverse data. Q-transformers, on the other hand, rely on discretizing and au-

toregressing the action space, which may increase the computational cost and

memory requirement for large and complex data.

- Robustness: Homotopy type theory based machine learning models and

38

systems may have better robustness than Q-transformers, because they can use

univalence and cubical type theory to compare and relate data, and use homo-

topy limits and colimits to aggregate and synthesize data. Q-transformers, on

the other hand, may be susceptible to overfitting and underfitting, and vulner-

able to adversarial attacks and distribution shifts, because they use fixed and

rigid data structures, and lack semantic and geometric information.

- Interpretability: Homotopy type theory based machine learning models and

systems may have better interpretability than Q-transformers, because they can

use the semantics and meaning of types and homotopies to explain and justify

the data, and use the coherence and consistency of homotopies to reason and

understand the data. Q-transformers, on the other hand, may be difficult to

interpret and understand, because they use high-capacity sequence modeling

techniques, and lack transparency and accountability.

These are some of the possible advantages of homotopy type theory based

machine learning models and systems over Q-transformers. However, these are

only hypothetical and speculative, and more empirical and theoretical studies

are needed to validate and verify them. We hope that our paper will inspire

more research and development on homotopy type theory and its applications

for machine learning.

39

	Introduction
	Homotopy Type Theory
	Types and Terms
	Equality and Identity Types
	Higher Inductive Types and Cubical Type Theory

	Challenges and Limitations of Data Representation and Manipulation in Machine Learning
	Representing and Manipulating Data Using Homotopy Type Theory
	Types as Data Abstractions
	Homotopies as Data Transformations
	Higher Inductive Types as Data Integration

	Challenges and Limitations of Algorithm Design and Learning Architecture Design in Machine Learning
	New Ways of Designing Algorithms and Learning Architectures Using Homotopy Type Theory
	Homotopy Equivalence as a Criterion for Inference
	Homotopy Optimization as a Method for Optimization
	Homotopy Generalization as a Technique for Generalization

	Conclusion and Future Work
	References
	Appendix A: Implementation and Evaluation of Homotopy Type Theory Based Machine Learning Models and Systems
	A.1 Implementation
	A.2 Homotopy type theory based machine learning models: Scalability, robustness, and interpretability

