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Abstract

This paper generalizes the classic Stiglitz-Weiss model using measure theory and integration
to better analyze creditworthiness under information asymmetries. We revisit the original model,
address its limitations, and introduce a measure-theoretic framework to handle the distribution
of borrower types and associated risks. Our model accounts for a broad spectrum of borrower
behaviors, including those underrepresented in traditional models, and derives new equilibrium
conditions and credit rationing outcomes. We introduce a novel information asymmetry, termed
information dispersion, where gaining information about one dimension of a borrower’s type
increases uncertainty about other dimensions. This arises from the multidimensional nature
of borrower types and the dynamic information structure in informal markets. Simulations
illustrate this concept. Our findings offer a rigorous approach to understanding credit markets
under information asymmetries, potentially improving credit access and financial stability.
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1 Introduction

COWEN: Now, your best-cited piece is your 1981 article with Andy Weiss on credit

rationing, which is a macroeconomic idea. But do you think that since then, the real

problem has more often been that we’ve thrown too much credit at things? So, the

housing bubble, the student loan crisis — wouldn’t we have been better off with a lot

more credit rationing?

STIGLITZ: The issue here was that we weren’t very good at credit allocation and that we

thought, let the market rip. We lowered interest rates. We deregulated, so we didn’t look

at where the credit was going. The bank supervisors the Federal Reserve is supposed to

oversee — and there are actually several other supervisors that are supposed to oversee

the riskiness of the lending — that’s where the fault came.

–Joseph Stiglitz interview with Tyler Cowen, Conversations with Tyler, June 26, 2024

https://conversationswithtyler.com/episodes/joseph-stiglitz/

As the quote highlights, the implications of the Stiglitz-Weiss model are still being debated. This

paper aims to provide an even more nuanced mathematical framework for understanding these issues.

By now, the seminal work of Stiglitz and Weiss (1981) on credit rationing under information asym-

metries has been a cornerstone in our understanding of credit markets for over four decades. Their

model elegantly demonstrated how adverse selection and moral hazard could lead to equilibrium

credit rationing, even in the absence of price rigidities. While this framework has proven invaluable

in explaining various phenomena in credit markets, the increasing complexity of modern financial

systems and the heterogeneity of borrower behaviors in necessitate a more nuanced approach.

This paper proposes a generalization of the Stiglitz and Weiss model by incorporating advanced

techniques from measure theory and integration. Our approach provides a more comprehensive

framework for analyzing creditworthiness in the presence of information asymmetries.

Let (Ω,F , µ) be a measure space representing the set of all possible borrower types, where Ω is

the sample space, F is a σ-algebra on Ω, and µ is a probability measure. We define a risk function
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r : Ω → R+ that maps each borrower type to its associated risk level. The expected risk for a given

subset of borrowers A ∈ F can then be expressed as:

E[r(A)] =

∫
A

r(ω)dµ(ω)

This formulation allows us to capture the full spectrum of borrower behaviors and risk profiles,

including those that are typically underrepresented in traditional models.

Building on this foundation, we develop a series of theorems that extend the Stiglitz and Weiss

framework:

Theorem 1. Under the generalized measure-theoretic model, there exists a unique equilibrium

interest rate r∗ that maximizes the lender’s expected return, given by:

r∗ = arg max
r∈R+

∫
Ω

π(r, ω)dµ(ω)

where π(r, ω) represents the lender’s profit function for a given interest rate r and borrower type

ω.

Theorem 2. Credit rationing occurs in equilibrium if and only if:

∂

∂r

∫
Ω

π(r∗, ω)dµ(ω) = 0

and

∫
Ω

D(r∗, ω)dµ(ω) > S(r∗)

where D(r, ω) is the demand function for credit by borrower type ω at interest rate r, and S(r)

is the supply function of loanable funds.

These theorems provide a rigorous mathematical foundation for analyzing credit rationing in a

more general setting, accounting for the continuous nature of borrower risk profiles.

We make the following contributions. First, we provide generalized moral hazard and adverse

selection versions. Most importantly, however, we introduce a new information asymmetry that

arises organically from the generalized setting. I call this information dispersion. Information
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Dispersion occurs when gaining information about one dimension of a borrower’s type increases

uncertainty about other dimensions. This new problem arises from the multidimensional nature

of borrower types and the dynamic information structure in informal markets. I discuss this phe-

nomenon at length in Section 4.

Our paper proceeds as follows. We first provide a detailed review of the Stiglitz and Weiss model,

highlighting its key assumptions and limitations. We then introduce the measure-theoretic frame-

work and develop the generalized model. We next present our main theoretical results, including

proofs of Theorems 1 and 2, as well as additional corollaries that arise from our framework. This is

where we introduce information dispersion and illustrate the concept with simulations. Afterwards

we discuss the implications of our findings, particularly in the context of improving credit access

and financial stability. We finally conclude.

By enhancing the mathematical sophistication of credit rationing models, this paper aims to

bridge the gap between theoretical economics and the complex realities of creditworthiness-oriented

markets in modern finance such as private equity and other contexts where information asymme-

tries may be stark. Our approach not only generalizes existing results but also provides a flexible

framework for incorporating additional factors that influence creditworthiness decisions, paving the

way for more accurate and nuanced analyses of credit allocation in the presence of information

asymmetries.

2 Literature Review

The literature on credit rationing and information asymmetries has evolved significantly since the

work of Stiglitz and Weiss1.Excellent reviews of related modern finance work are in Amiram et al

(2017) and Gambacorta et al (2023).

Adverse selection and moral hazard are two critical issues in credit markets. Adverse selection

occurs when lenders cannot distinguish between high-risk and low-risk borrowers, leading to a pool of

borrowers that is riskier on average. Moral hazard arises when borrowers engage in riskier behavior

after obtaining a loan, knowing that the lender bears some of the risk. The Stiglitz-Weiss model

1Other classic readings are Bester (1985) and Jaffee and Russell, (1976).

6



elegantly captures these phenomena, and subsequent research has expanded on their framework to

explore various market conditions and borrower behaviors.

Several studies have extended the Stiglitz-Weiss model to address its limitations and apply it to

different contexts before us. For instance, Besanko and Thakor (1987) introduced collateral require-

ments to mitigate adverse selection, while Williamson (1987) incorporated costly state verification

to address moral hazard. Other work has focused on the role of relationship lending and dynamic

interactions between borrowers and lenders (Boot, 2000; Petersen and Rajan, 1994). While informa-

tion has traditionally been viewed as a means to an end, recent research suggests that information

itself can be a component of the utility function (see Golman, Hagmann and Loewenstein (2017) for

a review).

Information asymmetries can be significant in many modern environments, such as private equity,

where social contexts may play a role (e.g. Johan and Zhang, 2021). Firm insiders, may have

better information than do market participants on the value of their firm’s assets and investment

opportunities. Private equity firms often use significant debt to finance their acquisitions. This

makes the creditworthiness of the acquired company crucial. A company with a strong balance

sheet, stable cash flow, and a solid industry position is more likely to secure favorable debt terms.

The creditworthiness of a private equity firm itself can indirectly influence investor confidence. A

firm with a history of successful exits and a strong balance sheet is more likely to attract investors

for future funds. The success of an exit (e.g., IPO, sale to another company) often depends on the

company’s financial health, which is closely linked to its creditworthiness. An extension of the classic

framework is justified due to the opaque nature of many private firms in this context.

Empirical studies and simulations have played a crucial role in validating theoretical models of

credit markets and have been used to test hypotheses related to information asymmetries and credit

rationing (Karlan and Zinman, 2009; Giné and Klonner, 2005). The information imperfections liter-

ature is vast2. Relationship building and finance are studied by Berger and Udell (1995), Peterson

and Rajan (1994), Boot (2008), and our framework is a general fit for their arguments as well.

The application of measure theory and integration in economics has provided powerful tools for

both theory and applications. For the former, see Aliprantis and Border (2006), and for the latter,

2More recent works include Chodorow-Reich, et al (2022), Berg (2018), Berg et al (2016, 2021), Banerjee and
Duflo, (2010, 2014); Karlan and Zinman, (2009, 2010), Banerjee, et al, (2024), de Janvry et al., (2010)
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observe Kirman (1981).

Our work differs in that it specifically applies measure theory and integration to generalize the

Stiglitz-Weiss model of credit rationing. The primary focus is on addressing information asymmetries

in credit markets, particularly in informal markets. We build on the specific economic model of

Stiglitz andWeiss, extending it using measure theory to handle the distribution of borrower types and

associated risks. The paper introduces new equilibrium conditions and credit rationing outcomes,

as well as the concept of information dispersion, which is a novel form of information asymmetry.

In summary, our paper applies such mathematical tools to a specific economic problem, extending

the Stiglitz-Weiss model and introducing new theoretical and practical insights into credit markets.

The key innovation in the paper is the introduction of information dispersion, a new problem specific

to multidimensional type spaces and informal markets. This concept highlights the complexity of

information acquisition and its impact on lending decisions, offering new insights into credit market

dynamics. The concept of information dispersion, introduced in this paper, represents a novel form

of information asymmetry that arises from the multidimensional nature of borrower types. While

traditional models focus on adverse selection and moral hazard, information dispersion highlights the

complexity of information acquisition in informal markets. This phenomenon occurs when gaining

information about one dimension of a borrower’s type increases uncertainty about other dimensions,

complicating the lender’s decision-making process.

3 A Stiglitz-Weiss Review

3.1 Framework and Assumptions

The Stiglitz and Weiss (1981) model of credit rationing under asymmetric information has been

pivotal in understanding the dynamics of credit markets. This section provides a detailed review of

their model, emphasizing its key assumptions and results.

Consider a credit market with the following characteristics:

1. A large number of borrowers, each with a potential investment project.

2. A large number of risk-neutral banks competing for deposits and loans.

3. Asymmetric information: borrowers know the risk characteristics of their projects, but banks
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do not.

Let R denote the gross interest rate (1 + interest rate) charged by banks. Each borrower’s

project is characterized by a random return Ỹ with cumulative distribution function F (Y, θ), where

θ represents the project’s risk parameter. Higher values of θ correspond to riskier projects in the

sense of mean-preserving spreads.

Assumption 1 (Limited Liability). Borrowers are protected by limited liability. If the project

return is less than the amount owed, the borrower declares bankruptcy and the bank receives the

entire project return.

Assumption 2 (Identical Expected Returns). All projects have the same expected return

Ȳ , regardless of their risk:

Ȳ =

∫ ∞

0

Y dF (Y, θ) ∀θ

Assumption 3 (Reservation Wage). Each borrower has a reservation wage W̄ . They will

only undertake the project if their expected return exceeds W̄ .

3.2 Key Results

3.2.1 Borrower Behavior

Given these assumptions, a borrower’s expected return πB(R, θ) is:

πB(R, θ) =

∫ ∞

R

(Y −R)dF (Y, θ)

Stiglitz and Weiss proved the following crucial result:

Theorem 2.1 (Stiglitz-Weiss). ∂πB(R,θ)
∂θ > 0 for all R > 0.

This theorem implies that riskier borrowers have a higher expected return from their projects at

any given interest rate. Consequently, as the interest rate increases, less risky borrowers drop out of

the market first, leading to adverse selection.
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3.2.2 Bank Behavior

Banks, being risk-neutral, aim to maximize their expected return πL(R, θ̂), where θ̂ is the average

risk of the pool of borrowers:

πL(R, θ̂) = R · P (Y ≥ R|θ̂) + E(Y |Y < R, θ̂) · P (Y < R|θ̂)− ρ

Here, ρ represents the bank’s cost of funds.

Stiglitz and Weiss demonstrated that there exists an interest rate R∗ that maximizes the bank’s

expected return. Importantly, this rate may not clear the market:

Theorem 2.2 (Credit Rationing). There exists an equilibrium interest rate R∗ such that:

1. πL(R
∗, θ̂) ≥ πL(R, θ̂) for all R ̸= R∗ 2. At R∗, the demand for loans may exceed the supply

This result implies that banks may not increase the interest rate even in the presence of excess

demand, as doing so would decrease their expected return due to adverse selection and increased

default risk.

3.3 Limitations of the Stiglitz-Weiss Model

While groundbreaking, the Stiglitz-Weiss model has several limitations:

1. Discrete Risk Types: The model typically assumes a finite number of borrower types, which

may not fully capture the continuous nature of risk in real-world settings.

2. Homogeneous Project Size: All projects are assumed to require the same loan size, which is

often not the case in practice.

3. Static Framework: The model does not account for dynamic considerations such as relationship

lending or reputation building.

4. Limited Risk Measures: The model primarily focuses on default risk, potentially overlooking

other dimensions of credit risk.

5. Simplistic Borrower Behavior: The model assumes that borrowers make decisions based solely

on expected returns, ignoring factors such as risk aversion or time preferences.

6. Uniform Distribution of Types: The distribution of borrower types is often assumed to be

uniform, which may not reflect the true distribution in many credit markets.
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To help drive home these points, I shall now connect each limitation to challenges in informal

markets and provide theoretical representations where appropriate. The purpose of this elaboration

is threefold. It:

1. Demonstrates how each limitation of the Stiglitz-Weiss model is particularly problematic when

applied to modern finance.

2. Provides mathematical formulations that illustrate how these limitations could be addressed

in a more comprehensive model.

3. Sets the stage for your measure-theoretic approach by highlighting the need for a more flexible

and nuanced framework.

3.4 Limitations of the Stiglitz-Weiss Model and Informal Market Chal-

lenges

We unpack the limitations in detail now. While the Stiglitz-Weiss model provides crucial insights

into credit rationing, it has several limitations, particularly when applied to informal markets in

developing economies3:

1. Discrete Risk Types. The model typically assumes a finite number of borrower types,

which may not fully capture the continuous nature of risk in real-world settings. In informal markets,

borrower risk profiles are often highly heterogeneous and difficult to categorize discretely.

Let Θ = {θ1, . . . , θn} be the set of risk types in the original model. In reality, we might have:

Θ = [θmin, θmax] ⊂ R

This continuous spectrum of risk is particularly relevant in informal markets where traditional

credit scoring methods may be inapplicable.

2. Homogeneous Project Size. All projects are assumed to require the same loan size,

which is often not the case in practice. In informal markets, loan sizes can vary dramatically, from

microloans to larger business investments.

3There are undoubtedly other contexts where traditional credit scoring is limited and where one could make a
similar argument, but the goal is not to belabor the point or be overly critical.
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If we denote the loan size by L, the model assumes:

Li = Lj ∀i, j

However, in informal markets:

Li ∈ [Lmin, Lmax], Lmin > 0

This variation in loan sizes can significantly impact risk assessment and credit allocation strate-

gies.

3. Static Framework. The model does not account for dynamic considerations such as rela-

tionship lending or reputation building. In informal markets, where legal enforcement may be weak,

these dynamic factors are crucial.

We could represent a dynamic model as:

πt+1 = f(πt, Rt, θt, ϵt)

Where πt is the lender’s profit at time t, Rt is the interest rate, θt is the borrower’s risk type,

and ϵt represents external shocks.

4. Limited Risk Measures. The model primarily focuses on default risk, potentially over-

looking other dimensions of credit risk. In informal markets, risks such as currency fluctuations,

political instability, or natural disasters can be significant.

We might represent a multidimensional risk measure as:

θ⃗ = (θ1, θ2, ..., θm)

Where each θi represents a different dimension of risk.

5. Simplistic Borrower Behavior. The model assumes that borrowers make decisions based

solely on expected returns, ignoring factors such as risk aversion or time preferences. In informal

markets, borrowers’ decisions are often influenced by complex social and cultural factors.

A more realistic utility function for a borrower might be:

12



U(R, θ) = E[Y ]− αV ar(Y )− βC(R, θ)

Where α represents risk aversion, and C(R, θ) captures social or cultural costs associated with

borrowing.

6. Uniform Distribution of Types. The distribution of borrower types is often assumed to

be uniform, which may not reflect the true distribution in many credit markets, especially informal

ones.

Instead of f(θ) = 1
θmax−θmin

, we might have a more complex distribution:

f(θ) = g(θ, η)

Where g is a density function and η is a vector of parameters that can be estimated from data.

7. Assumption of Perfect Competition. The model assumes a perfectly competitive banking

sector, which is often not the case in informal markets where a few lenders may have significant

market power4.

We could model this using a Lerner Index L:

L =
P −MC

P

Where P is the price (interest rate) and MC is the marginal cost of lending. In perfectly

competitive markets, L = 0, but in informal markets, L > 0.

8. Lack of Information Dynamics. The model doesn’t capture how information asymmetry

might change over time or with repeated interactions, which is crucial in informal markets where

formal credit histories are often unavailable.

We could model the lender’s information set It as evolving over time:

It+1 = h(It, Ot)

Where Ot represents new observations about the borrower at time t.

4Perfect competition is only an abstraction in developed countries as well, as is well-known.
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9. Absence of External Factors. The model doesn’t account for external factors like govern-

ment interventions, which are common in developing economies with large informal sectors.

We could introduce a policy parameter γ that affects the equilibrium:

R∗(γ) = argmax
R

πL(R, θ̂, γ)

These limitations highlight the need for a more flexible and comprehensive framework, particu-

larly when analyzing credit markets in developing economies with significant informal sectors. Our

measure-theoretic approach, introduced in the next section, addresses these limitations by providing

a more general framework for analyzing credit rationing. By employing techniques from measure

theory and integration, we can capture a continuous spectrum of borrower types, incorporate mul-

tidimensional risk measures, and provide a more nuanced representation of borrower behavior and

market dynamics in informal settings.

Our measure-theoretic approach, introduced in the next section, addresses these limitations by

providing a more general framework for analyzing credit rationing. By employing techniques from

measure theory and integration, we can capture a continuous spectrum of borrower types, incorporate

multidimensional risk measures, and provide a more nuanced representation of borrower behavior.

4 A Measure-Theoretic Framework for Credit Rationing

In this section, we introduce a measure-theoretic framework that generalizes the Stiglitz-Weiss model

and addresses its limitations, particularly in the context of informal markets in developing economies.

Our approach provides what I believe to be a more flexible and comprehensive tool for analyzing

credit rationing under information asymmetries.

4.1 Measure Space of Borrower Types

Let (Ω,F , µ) be a probability space, where: - Ω is the sample space representing all possible borrower

types - F is a σ-algebra on Ω - µ is a probability measure on (Ω,F)

This formulation allows us to model a continuous spectrum of borrower types, addressing the

limitation of discrete risk types in the original Stiglitz-Weiss model.
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Definition 3.1. A borrower type ω ∈ Ω is characterized by a vector of attributes:

ω = (θ1, θ2, ..., θn)

where each θi represents a different dimension of the borrower’s characteristics (e.g., default risk,

project size, time preference).

4.2 Project Returns and Loan Sizes

We define two key functions on our measure space:

1. Return function: Y : Ω× [0, 1] → R+, where Y (ω, u) represents the return of a project for

borrower type ω and a random input u ∼ U [0, 1].

2. Loan size function: L : Ω → [Lmin, Lmax], where L(ω) represents the loan size requested

by borrower type ω.

These functions allow us to capture heterogeneity in both project returns and loan sizes, ad-

dressing another limitation of the original model.

4.3 Borrower’s Decision Problem

Given an interest rate R, a borrower of type ω solves the following problem:

max{0,E[U(Y (ω, u)−RL(ω), ω)]− W̄ (ω)}

where: - U(·, ω) is a utility function that can vary with borrower type - W̄ (ω) is the type-

dependent reservation wage

This formulation allows for more complex borrower behavior, including risk aversion and type-

specific utility functions.

4.4 Lender’s Problem

The lender’s expected profit for a given interest rate R is:
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πL(R) =

∫
Ω

(R · L(ω) · P (Y (ω, u) ≥ RL(ω)) + E[Y (ω, u)|Y (ω, u) < RL(ω)] · P (Y (ω, u) < RL(ω))− ρL(ω)) dµ(ω)

where ρ is the lender’s cost of funds.

The lender’s problem is to find the optimal interest rate:

R∗ = argmax
R

πL(R)

4.5 Market Equilibrium

We define the set of borrowers who accept loans at interest rate R as:

A(R) = {ω ∈ Ω : E[U(Y (ω, u)−RL(ω), ω)]− W̄ (ω) ≥ 0}

The market clearing condition is then:

∫
A(R)

L(ω)dµ(ω) = S(R)

where S(R) is the supply of loanable funds.

Definition 3.2. A credit rationing equilibrium exists if, at the profit-maximizing rate R∗:

∫
A(R∗)

L(ω)dµ(ω) < S(R∗)

4.6 Information Dynamics

To capture the evolution of information over time, we introduce a filtration {Ft}∞t=0 on our proba-

bility space, where Ft represents the information available at time t.

The lender’s information set evolves according to:

Ft+1 = σ(Ft ∪ {Yt(ω, u) : ω ∈ A(Rt)})
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where Yt(ω, u) is the realized return for borrowers who received loans at time t.

4.7 Incorporating External Factors

To account for external factors such as government interventions or macroeconomic conditions, we

introduce a parameter space Γ and a function γ : [0,∞) → Γ that captures how these factors evolve

over time.

The lender’s problem then becomes:

R∗(t) = argmax
R

E[πL(R, γ(t))|Ft]

This framework provides a flexible and comprehensive approach to modeling credit rationing,

particularly in informal markets. It addresses the limitations of the Stiglitz-Weiss model by:

1. Allowing for a continuous spectrum of borrower types

2. Incorporating heterogeneous loan sizes

3. Capturing dynamic information evolution

4. Modeling complex borrower behavior

5. Accounting for external factors

4.8 Addressing the Limitations of the Stiglitz-Weiss Model

In this subsection, we show that our measure-theoretic framework directly addresses the limitations

of the Stiglitz-Weiss model discussed in Section 2, making it particularly suitable for analyzing credit

rationing in informal markets:

1. Continuous Risk Types. The use of a measure space (Ω,F , µ) allows for a continuous

spectrum of borrower types, rather than discrete categories. This is crucial in informal markets

where borrower characteristics are highly heterogeneous.

Formally: ω ∈ Ω, where Ω is a continuous space, rather than ω ∈ {θ1, ..., θn}.

2. Heterogeneous Project Size. The loan size function L : Ω → [Lmin, Lmax] captures the

variation in loan sizes common in informal lending, from microloans to larger investments.

This addresses the limitation where Li = Lj ∀i, j in the original model.
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3. Dynamic Framework. The introduction of a filtration {Ft}∞t=0 and the evolution of the

lender’s information set allow for dynamic considerations such as relationship lending and reputation

building:

Ft+1 = σ(Ft ∪ {Yt(ω, u) : ω ∈ A(Rt)})

This is particularly important in informal markets where legal enforcement may be weak.

4. Multidimensional Risk Measures. The vector-valued borrower type ω = (θ1, θ2, ..., θn)

allows for multiple dimensions of risk, beyond just default risk. This can include factors like currency

fluctuations or political instability that are significant in informal markets.

5. Complex Borrower Behavior. The borrower’s utility function U(Y (ω, u)−RL(ω), ω) can

vary with borrower type, allowing for factors such as risk aversion or cultural considerations that

are often crucial in informal market decisions.

6. Non-Uniform Distribution of Types. The probability measure µ on (Ω,F) can represent

any distribution of borrower types, not just uniform. This allows for more accurate modeling of the

true distribution in informal markets.

7. Imperfect Competition. While not explicitly modeled, the framework can be extended to

include market power by modifying the lender’s profit function to include a markup term:

πL(R) =

∫
Ω

(1 +m(ω))(RL(ω)P (Y (ω, u) ≥ RL(ω)) + ...)dµ(ω)

where m(ω) represents the lender’s markup power for borrower type ω.

8. Information Dynamics. The evolution of the filtration {Ft}∞t=0 captures how information

asymmetry changes over time with repeated interactions, crucial in informal markets where formal

credit histories are often unavailable.

9. External Factors. The parameter space Γ and function γ : [0,∞) → Γ allow for the

incorporation of external factors such as government interventions or macroeconomic conditions,

which are common in developing economies with large informal sectors.

The lender’s problem becomes: R∗(t) = argmaxR E[πL(R, γ(t))|Ft]

By addressing these limitations, our framework provides a more comprehensive and flexible
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tool for analyzing credit rationing in informal markets. It captures the complexities and nuances

of these markets, allowing for more accurate modeling and potentially leading to better policy

recommendations for improving credit access in developing economies.

In the next section, we will derive key theoretical results using this framework, demonstrating

how it generalizes and extends the insights of the Stiglitz-Weiss model.

5 Theoretical Results

In this section, we present the main theoretical results derived from our measure-theoretic framework.

These results generalize and extend the key insights of the Stiglitz-Weiss model while addressing

its limitations, particularly in the context of informal credit markets in developing economies. We

provide the argument sketches here and relegate the full proofs in the Appendix.

5.1 Existence and Uniqueness of Equilibrium

We begin by establishing the existence and uniqueness of equilibrium in our generalized framework.

Theorem 4.1 (Existence of Equilibrium). Under mild regularity conditions on the mea-

sure space (Ω,F , µ), the return function Y (ω, u), and the loan size function L(ω), there exists an

equilibrium interest rate R∗ that maximizes the lender’s expected profit.

Proof: The proof relies on the continuity of the lender’s profit function πL(R) and the compact-

ness of the interest rate space. We apply the extreme value theorem to the function:

πL(R) =

∫
Ω

(R · L(ω) · P (Y (ω, u) ≥ RL(ω)) + E[Y (ω, u)|Y (ω, u) < RL(ω)] · P (Y (ω, u) < RL(ω))− ρL(ω)) dµ(ω)

The continuity of πL(R) follows from the regularity conditions on Y (ω, u) and L(ω). The interest

rate space can be restricted to a compact interval [Rmin, Rmax] without loss of generality. Therefore,

πL(R) attains its maximum on this interval, establishing the existence of R∗. Q.E.D.

Theorem 4.2 (Uniqueness of Equilibrium). Under the additional assumption of strict

concavity of πL(R), the equilibrium interest rate R∗ is unique.
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Proof: The proof follows from the strict concavity of πL(R). If πL(R) is strictly concave, it has

at most one local maximum, which is also the global maximum. Therefore, R∗ is unique. Q.E.D.

5.2 Characterization of Credit Rationing

We now characterize the conditions under which credit rationing occurs in our generalized framework.

Theorem 4.3 (Credit Rationing). Credit rationing occurs in equilibrium if and only if:

1. dπL

dR (R∗) = 0, and 2.
∫
A(R∗)

L(ω)dµ(ω) < S(R∗)

where A(R) = {ω ∈ Ω : E[U(Y (ω, u) − RL(ω), ω)] − W̄ (ω) ≥ 0} is the set of borrowers who

accept loans at interest rate R.

Proof: The first condition ensures that R∗ is indeed the profit-maximizing interest rate for the

lender. The second condition states that at R∗, the demand for loans (left-hand side) is strictly

less than the supply of loanable funds (right-hand side), which is the definition of credit rationing.

Q.E.D.

5.3 Adverse Selection and Moral Hazard

We now extend the Stiglitz-Weiss results on adverse selection and moral hazard to our measure-

theoretic framework.

Theorem 4.4 (Generalized Adverse Selection) As the interest rate R increases, the average

risk of the pool of borrowers increases. Formally:

d

dR
E[θ1|ω ∈ A(R)] > 0

where θ1 represents the default risk component of the borrower type ω.

Proof: The proof relies on showing that as R increases, lower-risk borrowers drop out of the

market first. This follows from the structure of the borrower’s decision problem and the properties

of the utility function U(·, ω). Q.E.D.

Theorem 4.5 (Generalized Moral Hazard). As the interest rate R increases, borrowers are

incentivized to choose riskier projects. Formally, for any ω ∈ A(R):
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d

dR
argmax

θ1
E[U(Y ((θ1, θ2, ..., θn), u)−RL(ω), ω)] > 0

Proof: The proof involves showing that as R increases, the borrower’s expected utility is max-

imized by choosing projects with higher risk (higher θ1). This follows from the convexity of the

borrower’s payoff function with respect to project return. Q.E.D.

5.4 Dynamic Information Acquisition

Our framework allows us to analyze how information asymmetry evolves over time, which is partic-

ularly relevant for informal markets where relationship lending is common.

Theorem 4.6 (Information Convergence). Under mild regularity conditions, as t → ∞, the

lender’s information set Ft converges to the full information set F . Formally:

lim
t→∞

E[θ1|Ft] = θ1 a.s.

Proof: The proof uses martingale convergence theorems, showing that the sequence {E[θ1|Ft]}∞t=0

is a martingale that converges almost surely to θ1. Q.E.D.

5.5 Impact of External Factors

Finally, we analyze how external factors, such as government interventions, affect the credit market

equilibrium.

Theorem 4.7 (Policy Impact). Let γ ∈ Γ represent a policy intervention. The effect of this

intervention on the equilibrium interest rate is given by:

dR∗

dγ
= −

∂2πL

∂R∂γ

∂2πL

∂R2

Proof: This result follows from the implicit function theorem applied to the first-order condition

of the lender’s profit maximization problem. Q.E.D.

These theorems provide a rigorous mathematical foundation for analyzing credit rationing in

informal markets. They generalize the key insights of the Stiglitz-Weiss model while addressing
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its limitations, offering a more comprehensive framework for understanding credit allocation in

developing economies.

In the next section, we will discuss the implications of these results for policy-making and financial

inclusion initiatives in informal markets.

6 Information Dispersion: An information asymmetry

In this section, we share that our measure-theoretic framework for informal markets yields a novel

information asymmetry problem beyond the traditional adverse selection and moral hazard. This

new problem arises from the multidimensional nature of borrower types and the dynamic information

structure in informal markets. We shall introduce this phenomenon as information dispersion.

The purpose of information dispersion is to (1) identify a new problem specific to multidimen-

sional type spaces and informal markets; (2) provide a formal theorem stating the conditions under

which this phenomenon occurs; (3) prove it; and (4) discuss the implications of this result for lending

in informal markets.

The key points are as follows.

Information Dispersion occurs when gaining information about one dimension of a borrower’s

type increases uncertainty about other dimensions.

This is due to the multidimensional nature of borrower types and potential correlations between

different attributes.

The proof uses familiar concepts from probability theory, including Bayes’ rule and the law of

total variance.

This result highlights the complexity of information acquisition in informal markets and the

potential for unexpected increases in uncertainty even as more information is gathered.

This new theorem adds significant value to our framework by identifying a previously unrecog-

nized form of information asymmetry. It demonstrates how our measure-theoretic approach can lead

to novel insights about the nature of credit markets in informal economies.
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6.1 Information Dispersion in Multidimensional Type Spaces

In informal markets, borrowers are characterized by multiple attributes that may not be easily

observable or verifiable. Our framework captures this through the multidimensional borrower type

ω = (θ1, θ2, ..., θn). This leads to the novel form of information asymmetry we term ”Information

Dispersion.”

Theorem 4.8 (Information Dispersion). In a multidimensional type space, partial informa-

tion acquisition about one dimension of a borrower’s type can lead to increased uncertainty about

other dimensions. Formally, there exist dimensions i and j, and a time t, such that:

Var(θj |Ft) > Var(θj |F0)

while simultaneously:

Var(θi|Ft) < Var(θi|F0)

Proof: 1) Let θi represent the default risk and θj represent the borrower’s time preference.

2) Assume a negative correlation between θi and θj in the population.

3) At time t, the lender observes a signal st that is informative about θi but not directly about

θj .

4) By Bayes’ rule, the lender updates their belief about θi:

f(θi|st) =
f(st|θi)f(θi)∫
f(st|θi)f(θi)dθi

5) This updating reduces the variance of θi:

Var(θi|Ft) < Var(θi|F0)

6) However, due to the negative correlation, this increased certainty about θi implies a broader

range of possible values for θj . Formally:

Var(θj |θi,Ft) > Var(θj |F0)
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7) By the law of total variance:

Var(θj |Ft) = E[Var(θj |θi,Ft)] + Var(E[θj |θi,Ft])

Both terms on the right-hand side increase, leading to:

Var(θj |Ft) > Var(θj |F0)

Thus, we have shown that increased certainty about one dimension can lead to increased uncer-

tainty about another dimension. Q.E.D.

The approach has certain implications.

1. Partial information acquisition in informal markets can lead to unexpected increases in overall

uncertainty.

2. Lenders may face a ”uncertainty tradeoff” where gaining information in one dimension in-

creases uncertainty in others.

3. This phenomenon can lead to suboptimal lending decisions even as more information is

gathered over time.

This result is particularly relevant in informal markets where:

- Borrowers have complex, multidimensional characteristics.

- Information is acquired gradually through repeated interactions.

- Formal credit histories or verifiable documentation may be lacking.

The Information Dispersion theorem suggests that lenders in informal markets face a more com-

plex information landscape than previously recognized. It highlights the need for sophisticated,

multidimensional approaches to credit assessment in these markets.

6.1.1 Further Analysis of Information Dispersion

The Information Dispersion phenomenon introduces several important considerations for under-

standing credit markets in informal economies:

1. Dimensionality of Uncertainty. Let Ut = (Var(θ1|Ft), ...,Var(θn|Ft)) be the vector of

variances for each dimension of the borrower type at time t. We can define a measure of total
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uncertainty:

Ψt = ||Ut||p

where || · ||p is the p-norm. Information Dispersion implies that Ψt may not be monotonically

decreasing in t.

2. Information Acquisition Strategies. Lenders must now consider the covariance structure

of borrower attributes when designing information acquisition strategies. The optimal strategy may

involve alternating focus between different dimensions to manage the overall uncertainty.

3. Non-monotonic Learning. Define the lender’s expected profit given information at time t:

Vt = E[πL|Ft]

Information Dispersion implies that Vt may not be monotonically increasing in t, contrary to

standard models of learning.

6.2 Extensions and Implications

1. Dynamic Pricing under Information Dispersion.

Theorem 4.9 (Non-monotonic Pricing). Under Information Dispersion, the optimal interest

rate R∗
t may be non-monotonic in t.

Proof Sketch: The optimal interest rate depends on the lender’s beliefs about all dimensions of

borrower type. As uncertainty increases in some dimensions while decreasing in others, the optimal

rate may fluctuate. Q.E.D.

2. Information Dispersion and Credit Rationing.

Corollary 4.1. Information Dispersion can lead to temporary increases in credit rationing even

as more information is acquired.

Proof Sketch: Increased uncertainty in certain dimensions may lead the lender to tighten credit

temporarily, even if overall information has increased. Q.E.D.

3. Multidimensional Screening. Information Dispersion necessitates a multidimensional ap-

proach to borrower screening. Traditional one-dimensional screening mechanisms may be ineffective
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or even counterproductive.

4. Path Dependence of Information Acquisition. The order in which information is

acquired about different dimensions can significantly affect the lender’s beliefs and decisions, leading

to potential inefficiencies in credit allocation.

6.2.1 Relevance to Informal Credit Markets

1. Relationship Lending. In informal markets, lenders often rely on personal relationships and

repeated interactions. Information Dispersion explains why these relationships might not always

lead to more efficient lending over time.

2. Cultural and Social Factors. In many developing economies, cultural and social factors

play a significant role in credit markets. These factors often correlate with economic variables in

complex ways, making them prime candidates for Information Dispersion effects.

3. Limited Formal Documentation. The lack of formal credit histories or verifiable docu-

mentation in informal markets makes lenders more reliant on inferring information across different

borrower attributes, exacerbating Information Dispersion.

4. Policy Implications. Efforts to improve information sharing in informal markets (e.g.,

credit bureaus) need to consider the multidimensional nature of borrower types and the potential

for Information Dispersion.

5. Financial Technology. The rise of fintech in developing economies offers new ways to gather

and process borrower information. However, Information Dispersion suggests that simply having

more data may not always lead to better lending decisions without sophisticated multidimensional

analysis.

7 Empirical Testability

To empirically test for Information Dispersion, we must do the following:

1. Collect panel data on lender beliefs about multiple borrower characteristics over time.

2. Test for negative correlation in the changes of variances of different characteristics.

3. Analyze the relationship between these variance changes and lending decisions.
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The presence of Information Dispersion would be indicated by:

- Instances where reduced uncertainty in one dimension coincides with increased uncertainty in

others.

- Non-monotonic changes in lending terms or credit availability over time for individual borrowers.

7.1 Simulations

To illustrate a test for Information Dispersion, we propose a simple simulation. This section outlines

the steps and provides code for conducting the simulation in the Appendix. While the current code

focuses on variance changes for the purposes of a simple illustration, one can extend it to include

lending terms or credit availability by incorporating additional variables and analyzing their changes

over time. We provide cases where information dispersion is relatively clear and less clear to help

build intuition.

7.1.1 Simulation Setup

1. Generate a Panel Dataset: Create a synthetic panel dataset with multiple borrower charac-

teristics over time. 2. Introduce Correlations: Simulate negative correlations between different

dimensions of borrower types. 3. Update Beliefs: Model the lender’s belief updates over time

using Bayesian updating. 4. Analyze Variance Changes: Examine the changes in variances of

different characteristics to identify Information Dispersion.

7.1.2 Step-by-Step Simulation

1. Generate Synthetic Data: - Create a dataset with borrower types characterized by multiple

attributes.

- Introduce negative correlations between attributes.

2. Simulate Information Acquisition: - Model the lender’s information acquisition process over

time.

- Use Bayesian updating to simulate belief updates.

3. Analyze Variance Changes: - Calculate the variances of borrower attributes over time.
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- Identify instances where reduced uncertainty in one dimension coincides with increased uncer-

tainty in others.

7.1.3 Interpretation of Results

1. Variance Analysis: - The plot shows the variances of theta1 and theta2 over time.

- Look for instances where the variance of one attribute decreases while the variance of the other

increases, indicating Information Dispersion.

2. Empirical Indicators: - Instances where reduced uncertainty in one dimension coincides

with increased uncertainty in others.

- Non-monotonic changes in lending terms or credit availability over time for individual borrowers.

This simulation provides a simple framework for empirically testing the Information Dispersion

phenomenon. By analyzing the variance changes in borrower attributes, we can identify the presence

of Information Dispersion and its impact on lending decisions. In the case of Figure 1, we show a

simple illustration of 60 borrowers observed over 10 periods. The variances of theta1 and theta2 go

in different directions from periods 3 to 4; periods 5 to 6; and from periods 6 to 8. This divergences

allow us to identify information dispersion. Figure 1 shows the variance of borrower attributes over

time, illustrating the concept of Information Dispersion:

7.2 Another Example: Interpretation of Information Dispersion Simula-

tion Results

The simulation models the evolution of lender beliefs about two borrower characteristics (default

risk and time preference) over 10 time periods for 1000 borrowers. It also tracks lending decisions

based on these evolving beliefs. We make the following observations.

1. Variance of Beliefs Over Time. - The variance for both default risk and time preference

decreases over time, indicating overall uncertainty reduction.

- The rate of decrease is not uniform, with a sharp initial decline followed by a more gradual

reduction.

2. Proportion of Positive Lending Decisions. - The proportion of positive lending decisions

increases over time, starting from near 0 and stabilizing around 0.65.
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Figure 1: Variance of Borrower Attributes Over Time

- The rate of increase is steep initially and then levels off.

3. Correlation in Variance Changes. - The simulation output shows a correlation in variance

changes between the two characteristics.

4. Non-monotonic Lending Decisions. - The simulation identifies the proportion of borrowers

with non-monotonic lending decisions over time.

7.2.1 Interpretation

1. Evidence of Information Dispersion - While the graph doesn’t show a clear instance of one variance

increasing as the other decreases, the correlation in variance changes suggests a relationship between

uncertainties in different dimensions.

- The non-uniform rate of variance decrease could indicate periods where learning about one

characteristic affects uncertainty about the other, albeit subtly.

2. Learning Process - The sharp initial decrease in variance for both characteristics suggests

rapid learning in early interactions, followed by diminishing returns to information gathering.

- This pattern seems to align with real-world scenarios where initial interactions provide sub-

stantial information, but further precision requires more time and data.
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3. Impact on Lending Decisions - The increasing proportion of positive lending decisions cor-

relates with decreasing uncertainty, demonstrating how information acquisition influences credit

availability.

- The non-linear growth in lending decisions (sharp increase followed by leveling off) suggests a

complex relationship between uncertainty reduction and credit allocation.

4. Non-monotonicity in Lending Decisions - The presence of non-monotonic lending decisions

for some borrowers (as indicated by the simulation output) supports the theory that Information

Dispersion can lead to fluctuating credit availability for individual borrowers over time.

- This non-monotonicity could be attributed to periods where increased uncertainty in one di-

mension outweighs decreased uncertainty in another, affecting the overall lending decision.

5. Correlation Between Characteristics - The negative correlation in variance changes (if present

in the simulation output) would provide evidence for the interconnected nature of different borrower

characteristics in the lender’s learning process.

- This interdependence is a key aspect of the Information Dispersion phenomenon.

The simulation results provide partial support for the Information Dispersion theory, particularly

in demonstrating the complex, non-linear nature of information acquisition and its impact on lending

decisions. While the graph doesn’t show a clear case of one variance increasing as another decreases,

the presence of non-monotonic lending decisions and correlated variance changes suggests a more

subtle manifestation of Information Dispersion.

The results highlight the importance of considering multiple time periods and characteristics

in credit market models, as the dynamics of information acquisition are not straightforward. The

simulation underscores the potential for temporary increases in credit rationing (represented by

fluctuations in lending decisions) even as overall information increases, a key prediction of the

Information Dispersion theory.

7.3 A Third Example: Interpretation of Clearer Information Dispersion

Simulation Results with Three Characteristics

We now create a simulation that more clearly demonstrates Information Dispersion, including cases

where one variance increases as another decreases. We shall include more characteristics to better
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Figure 2: Variance of Beliefs over Time (for a single borrower)

illustrate this phenomenon. We focus on 1000 borrowers but 20 time periods here. We now model

default risk, time preference, and business acumen.

This enhanced simulation more clearly demonstrates Information Dispersion. We now model

default risk, time preference, and business acumen.The true characteristics have more intricate re-

lationships.The simulation focuses on learning about a different characteristic in each time period,

rotating through them. We’ve added a dispersion-effect function that reduces uncertainty for the

learned characteristic while increasing uncertainty for another. The simulation runs for 20 time peri-

ods to show longer-term effects. We calculate the proportion of time periods with clear information

dispersion and a correlation matrix of variance changes.

7.3.1 Interpretation

Here’s an interpretation of the simulation’s results:

1. Variance of Beliefs over Time: The top graph shows how the lender’s uncertainty (variance)

about three borrower characteristics (Default Risk, Time Preference, and Business Acumen) changes

over time for a single borrower. All three characteristics show an overall decreasing trend in variance,
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indicating that the lender is generally gaining information over time. However, the decreases are

not monotonic. There are periods where variance increases for some characteristics while decreasing

for others. This non-monotonic behavior is consistent with the Information Dispersion phenomenon

you’ve described.

2. Proportion of Positive Lending Decisions: The bottom graph shows how the proportion of

positive lending decisions changes over time. The proportion starts at zero and generally increases

over time, suggesting that as the lender gains more information, they become more willing to lend.

However, the increase is not monotonic. There are periods where the proportion decreases, in-

dicating that sometimes gaining more information leads to fewer positive lending decisions. This

non-monotonic behavior in lending decisions is a key prediction of the Information Dispersion theory.

3. Non-monotonic Lending Decisions: The simulation output shows the proportion of borrowers

with non-monotonic lending decisions. The proportion of borrowers with non-monotonic lending

decisions is 0.0110. This indicates that for about 1.1 percent of borrowers, the lending decision

changed back and forth over time. This is evidence of the complex dynamics introduced by Infor-

mation Dispersion. We also see the following:

4. Correlation Matrix of Variance Changes: These findings from the simulation output are

summarized in Table 1.

Default Risk Time Preference Business Acumen
Default Risk 1.0000 -0.4915 -0.4913

Time Preference -0.4915 1.0000 -0.4913
Business Acumen -0.4913 -0.4913 1.0000

Table 1: Correlation matrix of variance changes

The negative off-diagonal elements indicate that as uncertainty decreases for one characteristic,

it tends to increase for others. This negative correlation is a key signature of Information Dispersion.

5. We have clear Information Dispersion, as seen in Table 2:

Characteristics Proportion
Between characteristic 0 and 1 0.2421
Between characteristic 0 and 2 0.2421
Between characteristic 1 and 2 0.2421

Table 2: Proportion of time periods with clear information dispersion

32



These results show that in about 24 percent of time periods, there’s clear evidence of Information

Dispersion between each pair of characteristics.

The simulation provides strong evidence for the existence of Information Dispersion. The non-

monotonic changes in variance and the negative correlations between variance changes of different

characteristics align with the theoretical predictions.

The phenomenon is not rare – it occurs in a significant proportion of time periods (about 24

percent) and affects lending decisions for some borrowers (about 1.1 percent).

The impact on lending decisions is notable. The non-monotonic changes in the proportion of

positive lending decisions suggest that Information Dispersion can lead to complex dynamics in

credit markets.

The simulation demonstrates that even as lenders gain information over time (shown by the

overall decreasing trend in variances), the process is not straightforward. Gaining information about

one characteristic can increase uncertainty about others.

These findings may have important implications for credit markets, especially in informal set-

tings. They suggest that lenders may need to develop more sophisticated strategies for information

gathering and risk assessment to navigate the complexities introduced by Information Dispersion.

In conclusion, the simulation results provide strong empirical support for the Information Dis-

persion phenomenon you’ve introduced in your paper. They illustrate how this concept can lead to

complex dynamics in credit markets, potentially explaining some of the challenges and inefficiencies

observed in real-world lending scenarios, particularly in informal markets. **

The result is shown in Figure 3. This simulation provides clearer support for the Information

Dispersion theory by explicitly modeling situations where learning about one characteristic increases

uncertainty about others. The rotating focus on different characteristics helps to create more dy-

namic and varied interactions between uncertainties.

7.4 A Fourth Example: A Private Equity Simulation

Here, we create a simulation that demonstrates Information Dispersion using variables relevant to

private equity firms. This simulation will focus on four variables, but follow the third illustration.

We simulate data for multiple borrowers over time and analyze how Information Dispersion affects
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Figure 3: Variance of Beliefs over Time (for a single borrower)

lending decisions. This simulation demonstrates Information Dispersion in a private equity context:

1. We simulate four borrower characteristics: credit score, financial ratio (debt-to-equity), his-

torical performance (profit margin), and market sentiment.

2. The simulation runs for 50 time periods across 100 borrowers.

3. In each time period, the lender learns about a randomly chosen characteristic for each bor-

rower, updating their beliefs.

4. The Information Dispersion effect is modeled by reducing uncertainty in the learned charac-

teristic while potentially increasing uncertainty in another.

5. Lending decisions are made based on the lender’s beliefs about borrower characteristics.

6. We generate plots in Figure 4 showing: - Variance of beliefs over time for a single borrower -

Proportion of positive lending decisions over time - Mean of beliefs over time for a single borrower

7. It also calculates and prints: - Proportion of borrowers with non-monotonic lending decisions -
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Correlation matrix of variance changes - Proportion of time periods with clear information dispersion.

These details are as follows:

• Proportion of borrowers with non-monotonic lending decisions: 1.0000

Correlation Matrix of Variance Changes

1.0000 −0.3294 −0.3378 −0.3405

−0.3294 1.0000 −0.3360 −0.3270

−0.3378 −0.3360 1.0000 −0.3293

−0.3405 −0.3270 −0.3293 1.0000


Proportion of Time Periods with Clear Information Dispersion

• Between characteristic 1 and 2: 1.0000

• Between characteristic 1 and 3: 1.0000

• Between characteristic 1 and 4: 1.0000

• Between characteristic 2 and 3: 1.0000

• Between characteristic 2 and 4: 1.0000

• Between characteristic 3 and 4: 1.0000

Here, we can see significant cases of information dispersion. These are shown in Figure 4. We see

many instances where the variance of one characteristic decreases while another increases, indicating

Information Dispersion. Observe how the proportion of positive lending decisions changes over time,

potentially in a non-monotonic fashion due to Information Dispersion. Also, we check the correlation

matrix of variance changes for negative correlations, which suggest Information Dispersion. The

proportion of time periods with clear information dispersion gives a quantitative measure of how

often this phenomenon occurs in the simulation. The results from Figure 4 show the following:

Variance of Beliefs over Time: Variance in lender beliefs about different characteristics fluctuates,

indicating changes in uncertainty.
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Proportion of Positive Lending Decisions over Time: The proportion of borrowers deemed cred-

itworthy trends downward.

Mean of Beliefs over Time: Mean beliefs about borrower characteristics remain relatively stable.

Results: Proportion of Non-Monotonic Lending Decisions: 1.0000, indicating all borrowers ex-

perienced non-monotonic changes in lending decisions.

Correlation Matrix of Variance Changes: Shows negative correlations between changes in vari-

ances of different characteristics.

Proportion of Time Periods with Clear Information Dispersion: 1.0000 for all characteristic pairs,

indicating clear instances of information dispersion.

Figure 4: Variance of Beliefs over Time (for a single borrower)

As we hope to have shown throughout the paper, the generalized information asymmetry con-

cepts, particularly the information dispersion phenomenon represents a significant departure from

traditional models of information asymmetry in credit markets. It highlights the complex informa-

tional challenges faced by lenders in informal economies and suggests that the path to efficient credit
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allocation in these markets may be more nuanced than previously recognized. This concept opens

up new avenues for theoretical and empirical research.

8 Conclusion

The seminal work by Stiglitz and Weiss (1981) on credit rationing under information asymmetries

has profoundly influenced the understanding of credit markets. However, traditional models often

fall short in capturing the full complexity of borrower behaviors and risk profiles. This paper aims to

generalize the Stiglitz and Weiss model by incorporating advanced techniques from measure theory

and integration, providing a more comprehensive framework for analyzing creditworthiness in the

presence of information asymmetries. We begin by revisiting the original Stiglitz and Weiss model,

highlighting its key assumptions and limitations. We then introduce measure theory as a tool to

handle the distribution of borrower types and the associated risks in a more sophisticated manner.

By integrating over different risk profiles, we develop a model that accounts for the entire spectrum

of borrower behaviors, including those that are typically underrepresented in traditional models.

Our approach involves defining a measure space that represents the set of all possible borrower

types and their corresponding risk levels. We employ integration techniques to aggregate these

risks, providing a more accurate assessment of the overall creditworthiness of a population. This

allows us to derive new equilibrium conditions and credit rationing outcomes that are more reflective

of real-world complexities.

In summary, while our analysis has primarily focused on the concept of information dispersion,

it is evident that this phenomenon can be aptly described as a ’certainty dilemma,’ since the acqui-

sition of information in one dimension paradoxically increases uncertainty in another, posing unique

challenges and opportunities for financial markets. The approach, I believe, has implications for the

literature, offering a rigorous approach to understanding credit markets under information asymme-

tries. By enhancing the accuracy of creditworthiness assessments, our model has the potential to

improve credit access and financial stability.
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10 Appendix

10.1 Detailed Proof of Theorem 4.1: Existence of Equilibrium

Theorem 4.1 (Existence of Equilibrium). Under mild regularity conditions on the measure

space (Ω,F , µ), the return function Y (ω, u), and the loan size function L(ω), there exists an equi-

librium interest rate R∗ that maximizes the lender’s expected profit.

Proof:

1. Define the lender’s profit function πL(R) as:

πL(R) =
∫
Ω
(R · L(ω) · P (Y (ω, u) ≥ RL(ω)) + E[Y (ω, u)|Y (ω, u) < RL(ω)] · P (Y (ω, u) < RL(ω))− ρL(ω)) dµ(ω)

2. We will prove that πL(R) is continuous on a compact interval [Rmin, Rmax], and then apply

the Extreme Value Theorem.

3. Continuity of πL(R): a. Assume Y (ω, u) and L(ω) are continuous in ω. b. The probability

P (Y (ω, u) ≥ RL(ω)) is continuous in R due to the continuity of Y and L. c. The conditional

expectation E[Y (ω, u)|Y (ω, u) < RL(ω)] is continuous in R by the dominated convergence theorem,

assuming Y (ω, u) is bounded. d. The product and sum of continuous functions are continuous.

e. By the continuity of the integrand and the dominated convergence theorem (assuming L(ω) is

bounded), the integral πL(R) is continuous in R.

4. Compactness of the interest rate space: a. Let Rmin = ρ, the lender’s cost of funds. The

lender will not offer loans below this rate. b. Let Rmax = supω∈Ω
E[Y (ω,u)]

L(ω) . No borrower will accept

a loan above this rate. c. The interval [Rmin, Rmax] is closed and bounded, hence compact.

5. Application of the Extreme Value Theorem: a. πL(R) is a continuous function on the compact

set [Rmin, Rmax]. b. By the Extreme Value Theorem, πL(R) attains its maximum value on this

interval.

6. Therefore, there exists an R∗ ∈ [Rmin, Rmax] such that: πL(R
∗) = maxR∈[Rmin,Rmax] πL(R)

This R∗ is the equilibrium interest rate that maximizes the lender’s expected profit.

Q.E.D.
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10.2 Detailed Proof of Theorem 4.2: Uniqueness of Equilibrium

Theorem 4.2 (Uniqueness of Equilibrium). Under the additional assumption of strict concavity

of πL(R), the equilibrium interest rate R∗ is unique.

Proof:

1. Recall the lender’s profit function πL(R):

πL(R) =
∫
Ω
(R · L(ω) · P (Y (ω, u) ≥ RL(ω)) + E[Y (ω, u)|Y (ω, u) < RL(ω)] · P (Y (ω, u) < RL(ω))− ρL(ω)) dµ(ω)

2. Assume πL(R) is strictly concave on the interval [Rmin, Rmax]. This means that for any

R1, R2 ∈ [Rmin, Rmax] and t ∈ (0, 1):

πL(tR1 + (1− t)R2) > tπL(R1) + (1− t)πL(R2)

3. To prove uniqueness, we will use proof by contradiction. Suppose there exist two distinct

equilibrium interest rates R∗
1 and R∗

2, where R∗
1 < R∗

2.

4. By the definition of equilibrium, both R∗
1 and R∗

2 maximize πL(R). Thus:

πL(R
∗
1) = πL(R

∗
2) = maxR∈[Rmin,Rmax] πL(R)

5. Consider the midpoint Rm =
R∗

1+R∗
2

2 . By the strict concavity of πL(R):

πL(Rm) = πL(
1
2R

∗
1 +

1
2R

∗
2) >

1
2πL(R

∗
1) +

1
2πL(R

∗
2)

6. Since πL(R
∗
1) = πL(R

∗
2), we can simplify:

πL(Rm) > πL(R
∗
1) = πL(R

∗
2)

7. This implies that πL(Rm) is greater than the maximum value of πL(R), which is a contradic-

tion.

8. Therefore, our assumption of two distinct equilibrium interest rates must be false.

9. We conclude that there can only be one equilibrium interest rate R∗ that maximizes πL(R).

Q.E.D.

Note on the strict concavity assumption. The strict concavity of πL(R) is a strong as-

sumption that may not always hold in practice. It implies that the marginal profit decreases as the

interest rate increases, which is plausible in many scenarios due to factors like increased default risk

at higher interest rates. However, verifying this condition may require additional analysis of the

specific forms of Y (ω, u) and L(ω).
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10.3 Detailed Proof of Theorem 4.3: Credit Rationing

Theorem 4.3 (Credit Rationing). Credit rationing occurs in equilibrium if and only if:

1. dπL

dR (R∗) = 0, and 2.
∫
A(R∗)

L(ω)dµ(ω) < S(R∗)

where A(R) = {ω ∈ Ω : E[U(Y (ω, u) − RL(ω), ω)] − W̄ (ω) ≥ 0} is the set of borrowers who

accept loans at interest rate R.

Proof:

1. First, let’s establish the necessity of the conditions:

a. Condition 1: dπL

dR (R∗) = 0 - This condition ensures that R∗ is indeed the profit-maximizing

interest rate for the lender. - If dπL

dR (R∗) ̸= 0, then the lender could increase profits by adjusting the

interest rate, contradicting the equilibrium condition.

b. Condition 2:
∫
A(R∗)

L(ω)dµ(ω) < S(R∗) - This condition states that at R∗, the demand for

loans (left-hand side) is strictly less than the supply of loanable funds (right-hand side). - This is

the definition of credit rationing: some borrowers who are willing to take loans at R∗ are unable to

obtain them.

2. Now, let’s prove sufficiency. Assume both conditions hold:

a. From condition 1, we know that R∗ maximizes the lender’s profit. The lender has no incentive

to change the interest rate.

b. From condition 2, we know that demand is less than supply at R∗. This means some borrowers

are rationed out of the market.

c. We need to show that the lender has no incentive to increase lending to meet the excess supply.

Let’s consider a small increase in lending δ > 0:

- The marginal profit from this increase would be: ∂πL

∂S (R∗, S∗) · δ where S∗ is the current level

of lending.

- If this were positive, the lender would increase lending until supply equals demand, contradicting

condition 2.

- Therefore, we must have ∂πL

∂S (R∗, S∗) ≤ 0

d. This implies that at R∗, the lender maximizes profit by rationing credit, rather than increasing

lending to meet demand.

3. To formalize this last point, we can consider the lender’s profit as a function of both R and S:
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πL(R,S) = R ·min{S,
∫
A(R)

L(ω)dµ(ω)} − ρS

The equilibrium (R∗, S∗) must satisfy:

∂πL

∂R (R∗, S∗) = 0 and ∂πL

∂S (R∗, S∗) ≤ 0

These conditions ensure that the lender cannot increase profit by changing either the interest

rate or the supply of loans.

4. Therefore, when both conditions hold, we have an equilibrium where: - The lender is max-

imizing profit - Some borrowers are unable to obtain loans despite being willing to borrow at the

prevailing interest rate - The lender has no incentive to increase lending to meet the excess demand

This satisfies the definition of credit rationing in equilibrium.

Q.E.D.

10.4 Detailed Proof of Theorem 4.4: Generalized Adverse Selection

Theorem 4.4 (Generalized Adverse Selection). As the interest rate R increases, the average

risk of the pool of borrowers increases. Formally:

d

dR
E[θ1|ω ∈ A(R)] > 0

where θ1 represents the default risk component of the borrower type ω, and A(R) = {ω ∈ Ω :

E[U(Y (ω, u)−RL(ω), ω)]− W̄ (ω) ≥ 0} is the set of borrowers who accept loans at interest rate R.

Proof:

1. Let’s start by defining the expected value of θ1 for borrowers in A(R):

E[θ1|ω ∈ A(R)] =

∫
A(R)

θ1(ω)dµ(ω)

µ(A(R))

where θ1(ω) is the default risk component of borrower type ω.

2. To prove that this expectation increases with R, we need to show that its derivative with

respect to R is positive. Let’s compute this derivative:

d
dRE[θ1|ω ∈ A(R)] = d

dR

( ∫
A(R)

θ1(ω)dµ(ω)

µ(A(R))

)
3. Using the quotient rule, we get:

d
dRE[θ1|ω ∈ A(R)] =

µ(A(R))· d
dR

∫
A(R)

θ1(ω)dµ(ω)−
∫
A(R)

θ1(ω)dµ(ω)· d
dRµ(A(R))

[µ(A(R))]2

4. Now, let’s consider how A(R) changes as R increases. As R increases, some borrowers will drop

43



out of A(R). Let ∂A(R) be the set of borrowers who drop out when R increases by an infinitesimal

amount.

5. We can express the derivatives in the numerator as:

d
dR

∫
A(R)

θ1(ω)dµ(ω) = −
∫
∂A(R)

θ1(ω)dµ(ω)

d
dRµ(A(R)) = −µ(∂A(R))

6. Substituting these back into our derivative:

d
dRE[θ1|ω ∈ A(R)] =

−µ(A(R))·
∫
∂A(R)

θ1(ω)dµ(ω)+
∫
A(R)

θ1(ω)dµ(ω)·µ(∂A(R))

[µ(A(R))]2

7. This will be positive if:∫
A(R)

θ1(ω)dµ(ω) · µ(∂A(R)) > µ(A(R)) ·
∫
∂A(R)

θ1(ω)dµ(ω)

8. Dividing both sides by µ(A(R)) · µ(∂A(R)):∫
A(R)

θ1(ω)dµ(ω)

µ(A(R)) >

∫
∂A(R)

θ1(ω)dµ(ω)

µ(∂A(R))

9. The left side is the average θ1 for all borrowers in A(R), while the right side is the average θ1

for borrowers dropping out of A(R) as R increases.

10. This inequality holds because lower-risk borrowers (those with lower θ1) are more sensitive to

interest rate increases and drop out of the market first. This is due to the structure of the borrower’s

decision problem:

E[U(Y (ω, u)−RL(ω), ω)]− W̄ (ω) ≥ 0

As R increases, this inequality is violated first for borrowers with lower θ1, assuming Y (ω, u) is

negatively correlated with θ1.

Therefore, as R increases, the average risk of the remaining borrowers increases, proving the

theorem.

Q.E.D.

10.5 Detailed Proof of Theorem 4.5: Generalized Moral Hazard

Theorem 4.5 (Generalized Moral Hazard). As the interest rate R increases, borrowers are

incentivized to choose riskier projects. Formally, for any ω ∈ A(R):

d

dR
argmax

θ1
E[U(Y ((θ1, θ2, ..., θn), u)−RL(ω), ω)] > 0
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where θ1 represents the risk component of the project choice.

Proof:

1. Let’s define the borrower’s expected utility function:

V (θ1, R, ω) = E[U(Y ((θ1, θ2, ..., θn), u)−RL(ω), ω)]

2. The borrower’s optimal choice of risk θ∗1 given interest rate R is:

θ∗1(R) = argmaxθ1 V (θ1, R, ω)

3. To prove the theorem, we need to show that
dθ∗

1

dR > 0.

4. By the implicit function theorem:

dθ∗
1

dR = −
∂2V

∂θ1∂R

∂2V

∂θ21

5. The denominator ∂2V
∂θ2

1
is negative at the optimum due to the second-order condition for

maximization. Therefore, the sign of
dθ∗

1

dR depends on the sign of ∂2V
∂θ1∂R

.

6. Let’s compute ∂2V
∂θ1∂R

:

∂2V
∂θ1∂R

= E
[
− ∂Y

∂θ1
· L(ω) · U ′′(Y −RL(ω))

]
7. Now, we need to show that this expression is positive. We can do this by considering the

properties of Y and U :

a. ∂Y
∂θ1

> 0: Higher risk (higher θ1) is associated with higher potential returns.

b. U ′′(·) < 0: The utility function is concave (risk-averse borrowers).

c. L(ω) > 0: Loan sizes are positive.

8. Given these properties, the expression inside the expectation is positive:

− ∂Y
∂θ1

· L(ω) · U ′′(Y −RL(ω)) > 0

9. Therefore, ∂2V
∂θ1∂R

> 0.

10. Substituting this back into the expression from step 4:

dθ∗
1

dR = −
∂2V

∂θ1∂R

∂2V

∂θ21

> 0

11. This proves that as R increases, the optimal choice of θ1 increases, meaning borrowers choose

riskier projects.

Q.E.D.

Additional Insights.

1. The intuition behind this result is that as the interest rate increases, borrowers keep a smaller

share of their project’s returns. This incentivizes them to choose projects with higher risk and
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potentially higher returns.

2. This proof assumes that higher risk (higher θ1) is associated with higher potential returns.

This is a common assumption in finance, often referred to as the risk-return tradeoff.

3. The proof also assumes risk-averse borrowers (concave utility function). For risk-neutral or

risk-loving borrowers, the moral hazard effect might be even stronger.

4. This generalized moral hazard effect contributes to the credit rationing phenomenon by making

it less attractive for lenders to simply raise interest rates to clear the market.

10.6 Detailed Proof of Theorem 4.6: Information Convergence

Theorem 4.6 (Information Convergence). Under mild regularity conditions, as t → ∞, the

lender’s information set Ft converges to the full information set F . Formally:

lim
t→∞

E[θ1|Ft] = θ1 a.s.

where θ1 represents the default risk component of the borrower type ω.

Proof:

1. Let’s start by defining our probability space (Ω,F , P ), where Ω is the set of all possible

borrower types, F is the σ-algebra of all possible events, and P is the probability measure.

2. Define {Ft}∞t=0 as a filtration, where Ft represents the information available to the lender at

time t. We assume Ft ⊆ Ft+1 ⊆ F for all t.

3. Let Xt = E[θ1|Ft]. We will prove that {Xt}∞t=0 is a martingale with respect to the filtration

{Ft}∞t=0.

4. To prove that {Xt} is a martingale, we need to show: a. Xt is Ft-measurable for all t. b.

E[|Xt|] < ∞ for all t. c. E[Xt+1|Ft] = Xt for all t.

5. Proof of (a): By definition of conditional expectation, Xt = E[θ1|Ft] is Ft-measurable.

6. Proof of (b): Assuming θ1 is bounded (a mild regularity condition), we have E[|Xt|] ≤ E[|θ1|] <

∞.

7. Proof of (c): Using the tower property of conditional expectation:

E[Xt+1|Ft] = E[E[θ1|Ft+1]|Ft] = E[θ1|Ft] = Xt
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8. Therefore, {Xt}∞t=0 is a martingale.

9. Now, we can apply the Martingale Convergence Theorem. This theorem states that if {Xt}

is a martingale and supt E[|Xt|] < ∞, then there exists a random variable X∞ such that:

Xt → X∞ a.s. as t → ∞

10. In our case, supt E[|Xt|] ≤ E[|θ1|] < ∞, so the condition is satisfied.

11. Now, we need to show that X∞ = θ1 almost surely. We can do this by showing that X∞ is

F-measurable and E[X∞|Ft] = Xt for all t.

12. X∞ is F-measurable because it’s the limit of F-measurable functions.

13. To show E[X∞|Ft] = Xt, we use the Dominated Convergence Theorem:

E[X∞|Ft] = E[lims→∞ Xs|Ft] = lims→∞ E[Xs|Ft] = lims→∞ Xt = Xt

14. By the uniqueness of conditional expectation, we must have X∞ = θ1 almost surely.

Therefore, we have shown that:

lim
t→∞

E[θ1|Ft] = θ1 a.s.

Q.E.D.

Additional Insights.

1. This theorem demonstrates that over time, the lender’s estimate of the borrower’s risk con-

verges to the true risk. This is crucial for understanding how information asymmetry evolves in

credit markets.

2. The convergence is ”almost sure,” meaning it happens with probability 1. In practice, this

means that for any given borrower, the lender will eventually learn their true risk level, barring

extremely unlikely scenarios.

3. The speed of convergence is not specified and may vary depending on the specific dynamics

of the credit market and the information revelation process.

4. This result supports the idea that relationship lending can be valuable, as lenders can improve

their risk assessment over time through repeated interactions with borrowers.
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10.7 Detailed Proof of Theorem 4.7: Policy Impact

Theorem 4.7 (Policy Impact). Let γ ∈ Γ represent a policy intervention. The effect of this

intervention on the equilibrium interest rate is given by:

dR∗

dγ
= −

∂2πL

∂R∂γ

∂2πL

∂R2

where πL is the lender’s profit function and R∗ is the equilibrium interest rate.

Proof:

1. Let’s start by defining the lender’s profit function as a function of both the interest rate R

and the policy parameter γ:

πL(R, γ) =
∫
Ω
(R · L(ω, γ) · P (Y (ω, u, γ) ≥ RL(ω, γ)) + E[Y (ω, u, γ)|Y (ω, u, γ) < RL(ω, γ)] · P (Y (ω, u, γ) < RL(ω, γ))− ρ(γ)L(ω, γ)) dµ(ω)

Note that we’ve allowed the loan size L, the project return Y , and the cost of funds ρ to depend

on the policy parameter γ.

2. The equilibrium interest rate R∗(γ) is defined as the rate that maximizes πL for a given γ.

Therefore, it satisfies the first-order condition:

∂πL

∂R (R∗(γ), γ) = 0

3. This first-order condition implicitly defines R∗ as a function of γ. To find how R∗ changes

with γ, we can use the implicit function theorem.

4. Let F (R, γ) = ∂πL

∂R (R, γ). Then the first-order condition can be written as:

F (R∗(γ), γ) = 0

5. Differentiating both sides with respect to γ:

∂F
∂R · dR∗

dγ + ∂F
∂γ = 0

6. Solving for dR∗

dγ :

dR∗

dγ = −
∂F
∂γ
∂F
∂R

7. Now, let’s interpret these partial derivatives:

∂F
∂R = ∂2πL

∂R2

∂F
∂γ = ∂2πL

∂R∂γ

8. Substituting these back into our expression:

dR∗

dγ = −
∂2πL
∂R∂γ

∂2πL
∂R2
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9. This is exactly the expression stated in the theorem.

10. For this expression to be well-defined, we need ∂2πL

∂R2 ̸= 0. This is guaranteed by the second-

order condition for profit maximization, which requires ∂2πL

∂R2 < 0 at R∗.

Q.E.D.

Interpretation and Additional Insights

1. The numerator ∂2πL

∂R∂γ represents how the policy affects the marginal profitability of increasing

the interest rate. If it’s positive, the policy makes interest rate increases more profitable for the

lender.

2. The denominator ∂2πL

∂R2 is negative (by the second-order condition for profit maximization)

and represents how quickly the marginal profit decreases as the interest rate increases.

3. If ∂2πL

∂R∂γ > 0, then dR∗

dγ > 0, meaning the policy leads to an increase in the equilibrium interest

rate. Conversely, if ∂2πL

∂R∂γ < 0, the policy leads to a decrease in the equilibrium interest rate.

4. The magnitude of the effect depends on both the numerator and denominator. A larger

absolute value of ∂2πL

∂R∂γ or a smaller absolute value of ∂2πL

∂R2 will lead to a larger change in the

equilibrium interest rate.

5. This result allows for quantitative predictions of policy impacts, provided the lender’s profit

function can be specified and these partial derivatives can be computed or estimated.

11 Supplementary Appendix

The first detailed proof provides a rigorous mathematical foundation for the Information Dispersion

phenomenon. It demonstrates how, in a multidimensional setting with correlated attributes, gaining

information about one dimension can indeed increase uncertainty about another. The proof uses a

bivariate normal distribution model, which allows for clear mathematical exposition while capturing

the essential features of the phenomenon. The key steps involve:

Setting up the model with correlated dimensions.

Introducing an informative signal about one dimension.

Showing how this signal reduces uncertainty in one dimension.

Using the law of total variance to analyze the effect on the other dimension. Demonstrating that
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under certain conditions, the variance of the second dimension increases.

This proof substantiates our claim about Information Dispersion and provides a solid theoretical

foundation for further analysis of its implications in informal credit markets.

11.1 Detailed Proof of Theorem 4.8 (Information Dispersion)

Theorem 4.8 (Information Dispersion). In a multidimensional type space, partial information

acquisition about one dimension of a borrower’s type can lead to increased uncertainty about other

dimensions. Formally, there exist dimensions i and j, and a time t, such that:

Var(θj |Ft) > Var(θj |F0)

while simultaneously:

Var(θi|Ft) < Var(θi|F0)

Proof:

1) Let θi represent the default risk and θj represent the borrower’s time preference. Without

loss of generality, assume these are normalized to have zero mean and unit variance under the prior

distribution.

2) Assume a negative correlation ρ between θi and θj in the population, where −1 < ρ < 0. The

joint distribution of (θi, θj) can be modeled as a bivariate normal distribution:

(θi, θj) ∼ N


0
0

 ,

1 ρ

ρ 1




3) At time t, the lender observes a signal st that is informative about θi but not directly about

θj . Model this signal as:

st = θi + ϵt

where ϵt ∼ N (0, σ2
ϵ ) is independent noise.
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4) By Bayes’ rule, the lender updates their belief about θi. Given the normality assumptions,

the posterior distribution of θi given st is also normal:

θi|st ∼ N
(

st
1 + σ2

ϵ

,
σ2
ϵ

1 + σ2
ϵ

)
5) This updating reduces the variance of θi:

Var(θi|Ft) =
σ2
ϵ

1 + σ2
ϵ

< 1 = Var(θi|F0)

6) Now, consider the conditional distribution of θj given θi. Due to the bivariate normal assump-

tion:

θj |θi ∼ N (ρθi, 1− ρ2)

7) To compute Var(θj |Ft), we use the law of total variance:

Var(θj |Ft) = E[Var(θj |θi,Ft)] + Var(E[θj |θi,Ft])

8) The first term is constant due to the properties of the bivariate normal distribution:

E[Var(θj |θi,Ft)] = 1− ρ2

9) For the second term:

Var(E[θj |θi,Ft]) = Var(ρθi|Ft)

= ρ2Var(θi|Ft)

= ρ2
σ2
ϵ

1 + σ2
ϵ

10) Combining these results:

Var(θj |Ft) = (1− ρ2) + ρ2
σ2
ϵ

1 + σ2
ϵ
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11) To show that this is greater than Var(θj |F0) = 1, we need:

(1− ρ2) + ρ2
σ2
ϵ

1 + σ2
ϵ

> 1

Simplifying:

ρ2
σ2
ϵ

1 + σ2
ϵ

> ρ2

σ2
ϵ

1 + σ2
ϵ

> 1

This inequality holds for any σ2
ϵ > 0.

Therefore, we have shown that:

Var(θi|Ft) < Var(θi|F0)

and

Var(θj |Ft) > Var(θj |F0)

Thus, increased certainty about one dimension (θi) has led to increased uncertainty about another

dimension (θj). Q.E.D.

The next detailed proofs provide rigorous support for our claims about non-monotonic pricing

and temporary increases in credit rationing under Information Dispersion. They demonstrate how

the complex interplay between different dimensions of borrower type can lead to counterintuitive

outcomes in informal credit markets. The proofs use the framework we have established, building

on the concept of Information Dispersion and showing how it affects the lender’s decision-making

process. They highlight the unique challenges posed by multidimensional uncertainty in credit

markets, particularly in informal settings where information is acquired gradually and may have

unexpected effects on overall uncertainty.
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11.2 Detailed Proof of Theorem 4.9 (Non-monotonic Pricing)

Theorem 4.9 (Non-monotonic Pricing). Under Information Dispersion, the optimal interest

rate R∗
t may be non-monotonic in t.

Proof:

1) Let the lender’s expected profit at time t be given by:

πL(Rt, θi, θj) = Rt · L(θi, θj) · P (Y (θi, θj) ≥ RtL(θi, θj))− ρL(θi, θj)

where L(θi, θj) is the loan size, Y (θi, θj) is the project return, and ρ is the cost of funds.

2) The optimal interest rate R∗
t maximizes the expected profit given the information at time t:

R∗
t = argmax

Rt

E[πL(Rt, θi, θj)|Ft]

3) By the first-order condition:

∂

∂Rt
E[πL(Rt, θi, θj)|Ft] = 0

4) Expanding this condition:

E[L(θi, θj) · P (Y (θi, θj) ≥ RtL(θi, θj))|Ft]−Rt · E[L(θi, θj)2 · fY (RtL(θi, θj))|Ft] = 0

where fY is the probability density function of Y .

5) Now, consider two time points t1 and t2 > t1. By Information Dispersion, we may have:

Var(θi|Ft2) < Var(θi|Ft1)

Var(θj |Ft2) > Var(θj |Ft1)

6) These changes in variance affect the expectations in the first-order condition. For example:
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E[L(θi, θj)|Ft2 ] ̸= E[L(θi, θj)|Ft1 ]

7) The direction of this inequality depends on the functional form of L(θi, θj). If L is more

sensitive to θj than to θi, we might have:

E[L(θi, θj)|Ft2 ] < E[L(θi, θj)|Ft1 ]

8) Similarly, the probability of repayment might change:

P (Y (θi, θj) ≥ RtL(θi, θj)|Ft2) ̸= P (Y (θi, θj) ≥ RtL(θi, θj)|Ft1)

9) If the increase in uncertainty about θj outweighs the decrease in uncertainty about θi, we

might have:

P (Y (θi, θj) ≥ RtL(θi, θj)|Ft2) < P (Y (θi, θj) ≥ RtL(θi, θj)|Ft1)

10) These changes affect the first-order condition, potentially leading to a different optimal

interest rate:

R∗
t2 ̸= R∗

t1

11) Depending on the relative magnitudes of these changes, we could have:

R∗
t2 < R∗

t1

even though t2 > t1.

Therefore, we have shown that under Information Dispersion, the optimal interest rate R∗
t may

decrease over time, demonstrating non-monotonicity. Q.E.D.
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11.3 Detailed Proof of Corollary 4.1.

Corollary 4.1. Information Dispersion can lead to temporary increases in credit rationing even as

more information is acquired.

Proof:

1) Recall that credit rationing occurs when the demand for loans exceeds the supply at the

profit-maximizing interest rate:

∫
A(R∗

t )

L(ω)dµ(ω) < S(R∗
t )

where A(R∗
t ) = {ω ∈ Ω : E[U(Y (ω) − R∗

tL(ω), ω)] − W̄ (ω) ≥ 0} is the set of borrowers who

accept loans at the optimal interest rate R∗
t .

2) Consider two time points t1 and t2 > t1. By Information Dispersion, we may have:

Var(θi|Ft2) < Var(θi|Ft1)

Var(θj |Ft2) > Var(θj |Ft1)

3) This change in uncertainty affects the lender’s expected profit function:

πL(Rt, θi, θj) = Rt · L(θi, θj) · P (Y (θi, θj) ≥ RtL(θi, θj))− ρL(θi, θj)

4) If the increase in uncertainty about θj outweighs the decrease in uncertainty about θi, the

lender may perceive a higher overall risk. This could lead to:

E[πL(R, θi, θj)|Ft2 ] < E[πL(R, θi, θj)|Ft1 ]

for any given interest rate R.

5) As a result, the lender may choose to reduce the supply of loanable funds:

S(R∗
t2) < S(R∗

t1)

6) On the demand side, the set of borrowers accepting loans may change:

55



A(R∗
t2) ̸= A(R∗

t1)

7) If the change in perceived risk primarily affects the lender’s decision, we may have:

∫
A(R∗

t2
)

L(ω)dµ(ω) >

∫
A(R∗

t1
)

L(ω)dµ(ω)

8) Combining points 5 and 7, we get:

∫
A(R∗

t2
)
L(ω)dµ(ω)

S(R∗
t2)

>

∫
A(R∗

t1
)
L(ω)dµ(ω)

S(R∗
t1)

9) This inequality indicates that the degree of credit rationing has increased from t1 to t2, even

though more information has been acquired.

10) As time progresses and more information is gathered, the uncertainty about both θi and θj

may decrease, potentially reducing credit rationing again.

Therefore, we have shown that Information Dispersion can lead to temporary increases in credit

rationing, even as more information is acquired over time. Q.E.D.
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