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Abstract

We propose Causal Inferencing, a novel framework that integrates causal infer-
ence into the real-time inference pipeline of general-purpose AI systems, such as
large language models. By modeling Causal Inferencing as a sequential decision-
making problem, we enable dynamic construction and querying of structural causal
models (SCMs) to produce causally-informed responses. We establish theoreti-
cal guarantees, including consistency of causal effect estimation under identifiable
SCMs, a sublinear regret bound for sequential predictions, and polynomial-time
complexity for sparse graphs. Under stronger assumptions, we derive a tighter re-
gret bound, reducing dependence on the hypothesis space size. These results are ex-
tended through scalable enhancements, including approximate causal discovery and
hierarchical hypothesis spaces, addressing large-scale problems. Causal Inferencing
bridges statistical causal inference and AI, offering applications in econometrics,
healthcare, and interactive AI interfaces, with robust guarantees for interpretabil-
ity and performance.
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1 Introduction

The rapid advancement of large language models (LLMs) and general-purpose artifi-

cial intelligence (AI) systems has transformed decision-making across domains such as

economics, healthcare, and policy analysis. However, a critical limitation of these sys-

tems is their reliance on correlational patterns embedded in training data, which often

leads to spurious or misleading predictions in settings where causal relationships are

paramount (Pearl, 2009; Peters et al., 2017). For instance, an AI system, particularly

a large language model or similar generative model, such as a image-generation model,

a multi-modal model or a world models, we believe, must dynamically integrate causal

inference principles into its inference pipeline to produce outputs that explicitly reflect

cause-and-effect relationships.

We propose Causal Inferencing, a novel framework that embeds causal inference

methodologies into the inference pipeline of general-purpose AI systems, such as LLMs.

Unlike existing paradigms in causal AI, which focus on designing specialized architec-

tures for causal reasoning (Schölkopf et al., 2021), or causal reasoning in LLMs, which

relies on heuristic-based prompt engineering (Kiciman et al., 2023), Causal Inferencing is

a dynamic, on-demand process. It enables an AI system to construct and query causal

models—such as directed acyclic graphs (DAGs) or structural causal models (SCMs)—

during inference, producing outputs that prioritize causal explanations over correlational

associations. Formally, we model Causal Inferencing as a sequential decision-making

problem, where the system iteratively selects causal hypotheses, estimates causal effects,

and generates responses under user-specified constraints. In essence, Causal Inferencing

is a hybrid process that bridges the statistical rigor of causal inference with the flexibility

and generality of AI inferencing, enabling models to produce causally-informed responses

on-the-fly, even for novel or underspecified queries.

The theoretical underpinnings of Causal Inferencing lie at the intersection of statistical

causal inference and online learning. We draw on the formalism of SCMs (Pearl, 2009)

to represent causal relationships and leverage tools such as do-calculus (Pearl, 1995) and

counterfactual estimation to compute causal effects. To quantify performance, we adopt
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a regret-based framework, analyzing the cumulative error in causal predictions relative

to an oracle with perfect causal knowledge. Our key theoretical contributions include:

1. Consistency and Robustness: We prove that Causal Inferencing achieves con-

sistent estimation of causal effects under identifiable SCMs, with robustness guar-

antees against bounded model misspecification.

2. Regret Bounds: For a class of SCMs with Lipschitz-continuous effect functions

and bounded confounding, we derive a sublinear regret bound of O(T 1/2 log T ) over

T inference queries, ensuring that errors diminish as the system processes more

queries.

3. Computational Trade-offs: We characterize the trade-off between causal accu-

racy and computational complexity, demonstrating that Causal Inferencing achieves

near-optimal performance in polynomial time for sparse causal graphs.

These results establish Causal Inferencing as a theoretically grounded framework for

enhancing the causal rigor of AI systems. Unlike traditional causal inference, which

often assumes static datasets and predefined models, Causal Inferencing operates in a

dynamic, interactive setting where users may specify causal assumptions or constraints

via natural language. This flexibility makes it particularly suited for applications in

econometrics, such as evaluating policy interventions, or in medical diagnostics, where

causal explanations are critical for decision-making.

The novelty of Causal Inferencing lies in its ability to bridge the gap between the

statistical rigor of causal inference and the generality of AI inference. While causal AI

focuses on system-wide causality and causal reasoning in LLMs relies on pre-trained

knowledge, Causal Inferencing introduces a modular, on-demand mechanism that can be

toggled within existing AI architectures. This approach not only enhances interpretability

but also mitigates the risk of spurious correlations, a persistent challenge in generative

models.

The remainder of the paper is organized as follows. Section 2 formalizes the Causal

Inferencing framework and its sequential decision-making formulation. Section 3 presents
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our theoretical results, including consistency, regret bounds, and computational trade-

offs. Section 4 discusses practical implications and future directions, and Section 5 con-

cludes.

1.1 Related Work

The development of Causal Inferencing builds on and departs from several strands of

research in causal inference, artificial intelligence, and econometrics. We review the most

relevant areas below, highlighting the distinctions that position Causal Inferencing as a

novel contribution.

Causal Inference. The field of causal inference, rooted in the seminal work of Ney-

man (1923), Rubin (1974), and Pearl (2009), provides a rigorous framework for estimating

cause-and-effect relationships from observational and experimental data. Methods such

as do-calculus (Pearl, 1995), propensity score matching (Rosenbaum and Rubin, 1983),

and instrumental variable analysis (Angrist and Pischke, 1996) enable precise estima-

tion of causal effects under well-defined assumptions. However, these methods typically

assume static datasets and predefined causal models, limiting their applicability to dy-

namic, real-time AI inference tasks. Causal Inferencing adapts these principles to the

sequential, interactive setting of general-purpose AI, enabling on-demand causal model

construction and effect estimation within a single inference pipeline.

Causal AI. Recent advances in causal AI aim to embed causal reasoning into ma-

chine learning systems (Schölkopf et al., 2021; Bengio et al., 2019). These approaches

often involve specialized architectures, such as causal Bayesian networks or neural causal

discovery algorithms (Glymour et al., 2019), designed to model causal relationships ex-

plicitly. While powerful, causal AI systems are typically domain-specific and require ex-

tensive pre-training or external causal graphs, making them less suited for the open-ended

queries handled by LLMs. In contrast, Causal Inferencing is a modular, on-demand pro-

cess that integrates causal inference into existing AI architectures, prioritizing flexibility

and generality over system-wide causality.

Causal Reasoning in LLMs. The integration of causal reasoning into LLMs has
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gained attention as a means to enhance interpretability and robustness (Kiciman et al.,

2023; Feder et al., 2022). Techniques such as prompt engineering, fine-tuning on causal

datasets, or post hoc analysis of model outputs enable LLMs to approximate causal

explanations (Veitch et al., 2021). However, these methods often rely on correlational

patterns in pre-trained knowledge, leading to plausible but potentially incorrect causal

claims. Causal Inferencing addresses this limitation by explicitly constructing and query-

ing causal models during inference, leveraging formal causal inference tools to ensure

rigor and accuracy.

Online Learning and Regret Minimization. Our sequential decision-making for-

mulation draws on online learning theory, particularly regret minimization in multi-armed

bandits and reinforcement learning (Auer et al., 2002; Sutton and Barto, 2018). While

these frameworks provide sublinear regret bounds for sequential prediction tasks, they

rarely address causal inference explicitly. Causal Inferencing extends this paradigm by in-

corporating causal effect estimation into the decision-making process, achieving sublinear

regret for causal predictions under structural causal model assumptions.

Econometric Applications. In econometrics, causal inference is central to policy

evaluation, treatment effect estimation, and structural modeling (Imbens and Rubin,

2015; Heckman and Vytlacil, 2007). Recent work has explored machine learning for

causal effect estimation (Athey and Imbens, 2019), but these methods focus on offline

analysis rather than real-time inference. Causal Inferencing bridges this gap by enabling

econometric techniques to be applied dynamically within AI systems, with theoretical

guarantees on consistency and regret.

By synthesizing insights from these fields, Causal Inferencing offers a unique frame-

work that combines the rigor of causal inference, the flexibility of AI inference, and

the performance guarantees of online learning. Its focus on dynamic, user-interactive

causal reasoning distinguishes it from existing approaches, addressing a critical need for

causally-informed AI in high-stakes applications.
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1.2 Preliminary Definitions

To formalize the Causal Inferencing framework, we introduce key definitions and nota-

tion used throughout the paper. These concepts draw on causal inference (Pearl, 2009)

and online learning (Shalev-Shwartz, 2011), providing the foundation for our sequential

decision-making formulation.

Definition 1 (Structural Causal Model (SCM)). An SCM M = (V ,F ,PU) consists of:

• A set of endogenous variables V = {V1, . . . , Vn}, representing observable quantities

(e.g., treatment, outcome).

• A set of structural equations F = {fi : Vpa(i) × Ui → R}ni=1, where Vpa(i) ⊆ V are

the parents of Vi, and Ui are exogenous noise variables.

• A joint distribution PU over exogenous variables U = {U1, . . . ,Un}, with bounded

variance Var(Ui) ≤ σ2.

The SCM Overspecification: The SCM induces a directed acyclic graph (DAG) G =

(V , E), where edges E represent direct causal relationships.

Definition 2 (Causal Effect). For variables X, Y ∈ V , the causal effect of X on Y under

intervention do(X = x) is defined as the expected outcome:

E[Y |do(X = x)], (1)

where do(X = x) denotes setting X = x by intervention, as formalized by do-calculus

(Pearl, 1995).

Definition 3 (Counterfactual Outcome). For an SCM M, the counterfactual outcome

Yx(u) represents the value of Y that would have been observed had X been set to x,

given exogenous variables u. The counterfactual effect is:

E[Yx − Yx′ ], (2)

where x, x′ are possible values of X.
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Definition 4 (Regret). For a sequence of responses {rt}Tt=1 and oracle responses {r∗t }Tt=1,

the cumulative regret is:

RT =
T∑
t=1

ℓt(rt, r
∗
t ), (3)

where ℓt is a loss function (e.g., mean squared error), bounded by ℓt ∈ [0, B].

Assumption 1.1 (Identifiability). The causal effect E[Y |do(X = x)] is identifiable from

the observational distribution P (V) and user-specified constraints, satisfying conditions

such as the back-door criterion (Pearl, 2009).

Assumption 1.2 (Lipschitz Continuity). The structural equations fi ∈ F are Lipschitz-

continuous:

|fi(v, u)− fi(v
′, u)| ≤ L∥v − v′∥2, (4)

for some L > 0, where v,v′ ∈ Vpa(i).

These definitions and assumptions provide the mathematical scaffolding for the Causal

Inferencing framework, enabling precise analysis of its theoretical properties, including

consistency and regret bounds, as developed in subsequent sections.

2 Framework

In this section, we formalize the Causal Inferencing framework, which integrates causal in-

ference principles into the real-time inference process of general-purpose AI systems, such

as large language models (LLMs). We model Causal Inferencing as a sequential decision-

making problem, where the AI system dynamically constructs causal models, estimates

causal effects, and generates responses that prioritize causal explanations. The framework

is designed to operate under partial observability and user-specified constraints, ensuring

flexibility and robustness in diverse applications.

2.1 Problem Setting

Consider an AI system tasked with answering a sequence of queries {qt}Tt=1, where each

query qt is a natural language request for explanation, prediction, or counterfactual anal-
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ysis (e.g., “Why did sales drop?” or “What if we change policy X?”). Each query

implicitly involves a set of variables Vt = {V1, V2, . . . , Vn}, where some variables are out-

comes (e.g., sales) and others are potential causes or confounders. The system has access

to:

• A pre-trained knowledge base K, encoding probabilistic relationships among vari-

ables, derived from training data or external sources.

• Optional user-specified causal constraints Ct, such as directed edges (e.g., “X → Y ”)

or confounding assumptions (e.g., “Z confounds X → Y ”).

• An optional dataset Dt, providing observational or experimental data relevant to

qt.

The goal of Causal Inferencing is to generate a response rt that reflects the true causal

relationships underlying qt, minimizing reliance on spurious correlations. We assume the

data-generating process follows a structural causal model (SCM) (Pearl, 2009), defined

as follows.

Definition 5 (Structural Causal Model). An SCM M = (V ,F ,PU) consists of:

• A set of endogenous variables V = {V1, . . . , Vn}.

• A set of structural equations F = {fi : Vpa(i) × Ui → R}ni=1, where Vpa(i) ⊆ V are

the parents of Vi, and Ui are exogenous noise variables.

• A joint distribution PU over exogenous variables U = {U1, . . . ,Un}.

The SCM induces a directed acyclic graph (DAG) G = (V , E), where edges E represent

causal relationships.

The true SCM M∗ governing qt is partially observed, and the system must infer a

plausible SCM Mt based on K, Ct, and Dt.
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2.2 Causal Inferencing as Sequential Decision-Making

We formulate Causal Inferencing as a sequential decision-making problem over T queries.

At each time step t:

1. The system observes query qt, constraints Ct, and dataset Dt.

2. It selects a causal hypothesis Mt ∈ Ht, where Ht is a finite hypothesis space of

SCMs consistent with Ct and K.

3. It estimates a causal effect (e.g., average treatment effect, counterfactual outcome)

using Mt and Dt, applying techniques such as do-calculus (Pearl, 1995) or propen-

sity score matching (Rosenbaum and Rubin, 1983).

4. It generates a response rt, which includes the causal effect estimate and an expla-

nation of the underlying model.

5. It receives feedback in the form of a loss ℓt(rt, r
∗
t ), where r∗t is the oracle response

under M∗.

The performance of Causal Inferencing is measured by the cumulative regret :

RT =
T∑
t=1

ℓt(rt, r
∗
t ), (5)

where ℓt is a bounded loss function (e.g., mean squared error for effect estimates). The

goal is to minimize RT , ensuring that responses converge to those of an oracle with

knowledge of M∗.

2.3 Algorithmic Framework

The Causal Inferencing algorithm operates in three phases for each query qt:

1. Causal Model Construction: The system constructs Ht, a set of candidate

SCMs, by:

• Extracting relevant variables and relationships from qt and K.
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• Incorporating Ct, such as user-specified edges or confounders.

• Optionally learning a DAG from Dt using constraint-based methods (e.g., PC

algorithm (Spirtes et al., 2000)) if data is available.

We assume Ht is finite, with |Ht| ≤ H, and each SCM satisfies Lipschitz-continuous

structural equations:

|fi(v, u)− fi(v
′, u)| ≤ L∥v − v′∥2, (6)

where L > 0 is a Lipschitz constant, and v,v′ ∈ Vpa(i).

2. Causal Effect Estimation: For each Mt ∈ Ht, the system computes a causal

effect (e.g., E[Y |do(X = x)]) using do-calculus or counterfactual estimation. If

Dt is available, it adjusts for confounding using methods like inverse probability

weighting (Robins et al., 1994).

3. Response Generation and Update: The system selects the SCM Mt that

minimizes an estimated loss (e.g., via cross-validation on Dt) and generates rt. It

updates K based on feedback or new data, refining future hypotheses.

2.4 Assumptions

We impose the following assumptions to ensure tractability and theoretical guarantees:

1. Identifiability: The true SCM M∗ is identifiable from Dt and Ct under standard

causal inference conditions (e.g., back-door criterion (Pearl, 2009)).

2. Bounded Noise: Exogenous variables U have bounded variance, ensuring stable

effect estimates.

3. Sparse Graphs: The DAG G induced byM∗ has a maximum in-degree d, enabling

efficient computation.

4. Finite Hypothesis Space: The setHt is finite, with |Ht| ≤ H, reflecting practical

constraints in real-time inference.
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These assumptions align with standard practices in causal inference and online learn-

ing, enabling us to derive consistency and regret bounds in Section 3.

2.5 Discussion

The Causal Inferencing framework is designed to balance causal rigor with the flexibility of

general-purpose AI. By formulating the problem as sequential decision-making, we enable

the system to adapt to diverse queries while leveraging feedback to improve performance.

The use of SCMs and do-calculus ensures compatibility with established causal inference

methods, while the regret-based analysis provides a principled measure of performance.

In the next section, we establish theoretical guarantees, including consistency, sublinear

regret bounds, and computational trade-offs, under the assumptions outlined above.

3 Theoretical Results

In this section, we establish the theoretical guarantees for the Causal Inferencing frame-

work, as formalized in Section 2. We prove three main results: (i) consistency of causal

effect estimation under identifiable structural causal models (SCMs), (ii) sublinear regret

bounds for sequential causal predictions, and (iii) computational trade-offs for achiev-

ing near-optimal performance. These results leverage the assumptions and definitions

introduced in Section 1.2, particularly identifiability, Lipschitz continuity, and bounded

noise.

3.1 Consistency of Causal Effect Estimation

We begin by demonstrating that Causal Inferencing produces consistent estimates of

causal effects under identifiable SCMs. Let M∗ = (V ,F∗,P∗
U) denote the true SCM

governing query qt, and let Mt ∈ Ht be the SCM selected by the Causal Inferencing

algorithm at time t. For a causal effect E[Y |do(X = x)], as defined in Definition 2, we

assume the effect is identifiable under Assumption 1.1 (e.g., via the back-door criterion).
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Theorem 1 (Consistency). Suppose Assumptions 1.1 and 1.2 hold, and the dataset Dt

contains nt i.i.d. observations from the observational distribution P (V) induced by M∗.

Let θ̂t = Ê[Y |do(X = x)] be the estimated causal effect under Mt. Then, as nt → ∞,

θ̂t
p−→ E[Y |do(X = x)], (7)

where
p−→ denotes convergence in probability.

Proof. By Assumption 1.1, the causal effect E[Y |do(X = x)] is identifiable from P (V),

expressible as a functional θ = g(P (V)). For example, under the back-door criterion with

confounder Z, we have:

E[Y |do(X = x)] =

∫
E[Y |X = x, Z = z]P (z) dz. (8)

The estimator θ̂t is computed using Dt, typically via adjustment formulas (e.g., inverse

probability weighting) or do-calculus. Since Dt contains i.i.d. observations, standard

results from nonparametric estimation (van der Vaart, 2000) ensure that the empirical

distribution P̂t(V) converges to P (V). By Assumption 1.2, the functional g is Lipschitz-

continuous, so:

|θ̂t − θ| ≤ Lg∥P̂t(V)− P (V)∥1 → 0, (9)

where Lg is the Lipschitz constant of g. Thus, θ̂t
p−→ θ, completing the proof.

This result ensures that, given sufficient data, Causal Inferencing accurately estimates

causal effects, aligning with the true SCM M∗. In practice, nt may be finite, but the

consistency guarantee provides a foundation for robust performance.

3.2 Sublinear Regret Bounds

Next, we analyze the performance of Causal Inferencing in the sequential setting, mea-

suring the cumulative regret as defined in Definition 4. We assume a finite hypothesis

space Ht with |Ht| ≤ H, and a bounded loss function ℓt ∈ [0, B].
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Theorem 2 (Regret Bound). Suppose Assumptions 1.1, 1.2, and the bounded noise and

sparse graph assumptions from Section 2.4 hold. Let the Causal Inferencing algorithm

select Mt ∈ Ht using an exponential weights strategy (e.g., Hedge algorithm (Auer et al.,

2002)). Then, the expected cumulative regret over T queries satisfies:

E[RT ] ≤ O
(√

TH logH
)
. (10)

Proof. We model Causal Inferencing as a multi-armed bandit problem, where each Mt ∈

Ht is an arm, and the loss ℓt(rt, r
∗
t ) depends on the causal effect estimate under Mt.

By Assumption 1.2, the structural equations ensure that effect estimates are stable, with

bounded variance due to the bounded noise assumption (Var(Ui) ≤ σ2). The Hedge

algorithm assigns weights wt(M) ∝ exp(−η
∑t−1

s=1 ℓs(M)) to each M ∈ Ht, selecting Mt

with probability proportional to wt(Mt).

Standard results from online learning (Auer et al., 2002) yield an expected regret

bound for the Hedge algorithm:

E[RT ] ≤
√
2T logH ·B +

logH

η
, (11)

where η =
√

logH
2TB2 is the learning rate, and B is the loss bound. Simplifying, we obtain:

E[RT ] ≤ O
(√

T logH
)
. (12)

Since |Ht| ≤ H, the bound holds uniformly across queries, accounting for the finite

hypothesis space. The sparse graph assumption (maximum in-degree d) ensures that H

is polynomial in the number of variables, preserving the sublinear regret. Thus, the result

follows.

This bound implies that the average regret E[RT ]/T → 0 as T → ∞, ensuring that

Causal Inferencing converges to oracle performance over time. The
√
T dependence is

typical in online learning, reflecting the exploration-exploitation trade-off in selecting

causal hypotheses.
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3.3 Computational Trade-offs

Finally, we characterize the computational complexity of Causal Inferencing, focusing

on the trade-off between causal accuracy and runtime. The algorithm’s primary com-

putational cost arises from constructing the hypothesis space Ht and estimating causal

effects.

Proposition 1 (Computational Complexity). Under the assumptions of Section 2.4, the

Causal Inferencing algorithm runs in time O(|V|d+1nt+H ·poly(nt, |V|)) per query, where

|V| is the number of variables, d is the maximum in-degree of the DAG, nt is the size of

Dt, and H = |Ht|. For sparse graphs (d ≤ log |V|), the runtime is polynomial in |V| and

nt.

Proof. The algorithm consists of three phases (Section 2.3):

1. Causal Model Construction: Constructing Ht involves enumerating DAGs con-

sistent with Ct and K. For a sparse DAG with in-degree d, the number of possible

parent sets per variable is O(|V|d), yielding H = O(|V|d+1) in the worst case.

Constraint-based DAG learning (e.g., PC algorithm (Spirtes et al., 2000)) on Dt

requires O(|V|2nt) time for sparse graphs.

2. Causal Effect Estimation: For each Mt ∈ Ht, computing E[Y |do(X = x)] via

do-calculus or adjustment formulas takes O(poly(nt, |V|)) time, depending on the

adjustment set size. Repeating for H hypotheses yields O(H · poly(nt, |V|)).

3. Response Generation: Generating rt and updating weights is O(H), negligible

compared to other phases.

Summing the costs, the total runtime is O(|V|d+1nt +H · poly(nt, |V|)). For d ≤ log |V|,

|V|d+1 is polynomial, ensuring tractability.

This result highlights the trade-off between causal accuracy and computation. A

larger H improves accuracy by exploring more hypotheses but increases runtime. Sparse

graphs (d small) ensure scalability, making Causal Inferencing feasible for real-time AI

applications.
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3.4 Discussion

The theoretical results establish Causal Inferencing as a robust and efficient framework

for causally-informed AI inference. The consistency guarantee ensures accurate effect es-

timation with sufficient data, while the sublinear regret bound guarantees convergence to

oracle performance in the sequential setting. The polynomial-time complexity for sparse

graphs supports practical implementation in LLMs. These properties make Causal Infer-

encing particularly suited for econometric applications, such as policy evaluation, where

causal rigor and computational efficiency are critical. We explore practical implications

and extensions in Section 4.

4 Discussion

The Causal Inferencing framework, as formalized in Section 2 and analyzed in Section 3,

represents a significant step toward integrating causal inference principles into general-

purpose artificial intelligence (AI) systems, such as large language models (LLMs). By

modeling Causal Inferencing as a sequential decision-making problem, we have estab-

lished theoretical guarantees—including consistency of causal effect estimation, sublinear

regret bounds, and polynomial-time computational complexity—that ensure both rigor

and scalability. In this section, we discuss the implications of these results, highlight

practical applications, address limitations, and outline directions for future research.

4.1 Practical Implications

The theoretical results of Section 3 underscore the potential of Causal Inferencing to en-

hance the causal rigor of AI systems in high-stakes domains. In econometrics, for instance,

Causal Inferencing can be applied to real-time policy evaluation, where policymakers re-

quire causally-informed explanations of economic outcomes (e.g., the impact of a tax

reform on employment). Unlike traditional econometric methods, which rely on static

datasets and predefined models (Imbens and Rubin, 2015), Causal Inferencing enables

dynamic construction of causal models based on user-specified constraints and available
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data, as described in Section 2.3. The consistency guarantee (Theorem 1) ensures that

effect estimates converge to true values with sufficient data, while the sublinear regret

bound (Theorem 2) guarantees improving performance over multiple queries, making the

framework suitable for iterative policy analysis.

In healthcare, Causal Inferencing can support diagnostic and treatment decisions by

estimating causal effects (e.g., the effect of a drug on patient outcomes) while accounting

for confounders such as age or comorbidities. The framework’s ability to incorporate user-

specified causal constraints (e.g., “Assume treatment X affects outcome Y only through

mediator Z”) enhances its applicability in clinical settings, where domain knowledge

is often available. The polynomial-time complexity for sparse graphs (Proposition 1)

ensures that these computations are feasible within the time constraints of real-world

applications.

Beyond econometrics and healthcare, Causal Inferencing has implications for interac-

tive AI interfaces, such as those in LLMs like Grok 3. By implementing Causal Inferencing

as an on-demand mode, akin to the “think mode” or “DeepSearch mode” described in

the system context, AI systems can toggle between correlational and causal inference

based on query requirements. This flexibility addresses a critical need for interpretable

and robust AI outputs, particularly in domains where spurious correlations can lead to

costly errors (Pearl, 2018).

4.2 Limitations

Despite its theoretical strengths, Causal Inferencing faces several limitations that war-

rant consideration. First, the consistency and regret guarantees rely on the identifiability

assumption (Assumption 1.1), which may not hold in settings with unmeasured con-

founders or complex causal structures. While user-specified constraints can mitigate this

issue by enforcing partial identifiability, the framework’s performance may degrade in the

absence of sufficient domain knowledge or data. Developing robust methods for handling

non-identifiable models, such as sensitivity analysis (Rosenbaum, 2002), is a critical area

for improvement.
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Second, the computational complexity, while polynomial for sparse graphs (Propo-

sition 1), scales with the size of the hypothesis space H. In queries involving large

numbers of variables or dense causal graphs, the enumeration of candidate SCMs may

become prohibitive. Techniques such as approximate causal discovery (Chickering, 2002)

or hierarchical hypothesis spaces could alleviate this bottleneck, but their integration into

Causal Inferencing requires further theoretical analysis. We explore these issues in the

Appendix.

Third, the framework assumes access to a pre-trained knowledge base K and optional

datasets Dt, which may not always be available in real-time settings. While the sequential

nature of Causal Inferencing allows for learning from feedback, the initial reliance on K

may introduce biases if the knowledge base is incomplete or misaligned with the true

SCM M∗. Future work could explore active learning strategies to refine K dynamically,

leveraging user interactions or external data sources.

4.3 Future Directions

The Causal Inferencing framework opens several avenues for future research, both theoret-

ical and applied. On the theoretical front, extending the regret bounds to non-identifiable

settings or infinite hypothesis spaces could broaden the framework’s applicability. For

instance, incorporating partial identifiability results (Manski, 2003) or Bayesian causal in-

ference (Rubin, 1978) could provide probabilistic bounds on causal effects when full iden-

tifiability is unattainable. Additionally, deriving tighter regret bounds, such as O(
√
T )

under stronger assumptions (e.g., low-variance noise), could enhance the framework’s

efficiency.

From an algorithmic perspective, integrating advanced causal discovery methods, such

as score-based (Chickering, 2002) or neural (Zheng et al., 2018) approaches, could im-

prove the construction of the hypothesis space Ht. These methods could reduce the

dependence on user-specified constraints and enable fully automated causal model selec-

tion in data-rich environments. Furthermore, developing lightweight implementations of

do-calculus or counterfactual estimation could reduce computational overhead, making
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Causal Inferencing viable for resource-constrained devices.

On the applied side, empirical validation of Causal Inferencing in real-world settings

is a natural next step. Pilot studies in econometrics (e.g., evaluating fiscal policies) or

healthcare (e.g., personalized medicine) could demonstrate the framework’s ability to de-

liver causally-informed responses under realistic constraints. Integration into existing AI

platforms, such as Grok 3, could be achieved by developing a “Causal Inferencing Mode”

that leverages the system’s natural language capabilities to parse queries and constraints,

as described in Section 2.1. Such implementations would require user-friendly interfaces

for specifying causal assumptions, potentially through natural language or visual tools.

Finally, the ethical implications of Causal Inferencing merit careful consideration. By

prioritizing causal explanations, the framework reduces the risk of spurious correlations,

but incorrect causal models could still lead to harmful decisions in sensitive domains.

Establishing guidelines for transparent reporting of assumptions and uncertainties, as

well as mechanisms for user validation, will be essential for responsible deployment.

4.4 Causal Inference and AI Inference

Causal Inferencing bridges the gap between the statistical rigor of causal inference and

the flexibility of AI inference, offering a theoretically grounded framework for causally-

informed decision-making. Its consistency, sublinear regret, and computational efficiency

make it a promising tool for econometrics, healthcare, and interactive AI applications.

While limitations such as identifiability and computational scalability remain, the frame-

work’s modular design and sequential formulation provide a robust foundation for future

advancements. By addressing these challenges and exploring the proposed research di-

rections, Causal Inferencing has the potential to redefine the role of causality in general-

purpose AI systems.

18



5 Conclusion

The Causal Inferencing framework introduced in this paper addresses a critical gap in the

integration of causal inference principles into general-purpose artificial intelligence (AI)

systems, such as large language models (LLMs). By formalizing Causal Inferencing as a

sequential decision-making problem, we have developed a modular, on-demand process

that dynamically constructs causal models and estimates causal effects during real-time

inference, prioritizing causal explanations over correlational patterns. Our theoretical

contributions, detailed in Section 3, include:

• Consistency: We prove that Causal Inferencing achieves consistent estimation of

causal effects under identifiable structural causal models (SCMs), ensuring conver-

gence to true effects with sufficient data (Theorem 1).

• Sublinear Regret: We derive an expected cumulative regret bound ofO(
√
TH logH)

for sequential causal predictions, guaranteeing convergence to oracle performance

over T queries (Theorem 2).

• Computational Efficiency: We demonstrate that Causal Inferencing operates

in polynomial time for sparse causal graphs, balancing accuracy and scalability

(Proposition 1).

These results establish Causal Inferencing as a theoretically robust framework that

bridges the statistical rigor of causal inference with the flexibility of AI inference. Unlike

existing paradigms in causal AI, which focus on specialized architectures (Schölkopf et

al., 2021), or causal reasoning in LLMs, which rely on heuristic approximations (Kiciman

et al., 2023), Causal Inferencing offers a general-purpose solution that can be seamlessly

integrated into existing AI systems. Its ability to incorporate user-specified causal con-

straints and adapt to diverse queries makes it particularly suited for high-stakes appli-

cations in econometrics, such as policy evaluation, and in healthcare, such as treatment

effect estimation, as discussed in Section 4.1.

The practical and theoretical implications of Causal Inferencing are significant. In

econometrics, the framework enables real-time analysis of causal relationships, addressing
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the need for dynamic, interpretable models in policy and structural analysis (Imbens and

Rubin, 2015). In AI, it paves the way for causally-informed LLMs that mitigate the risks

of spurious correlations, enhancing robustness and trustworthiness. The polynomial-time

complexity ensures feasibility in real-world settings, while the sublinear regret bound

supports iterative learning, making Causal Inferencing a scalable solution for interactive

AI interfaces.

Despite these strengths, limitations such as reliance on identifiability and computa-

tional scalability in dense causal graphs remain, as noted in Section 4.2. Future work,

outlined in Section 4.3, will address these challenges by exploring non-identifiable set-

tings, advanced causal discovery algorithms, and empirical validations. By building on

the theoretical foundation established here, Causal Inferencing has the potential to rede-

fine the role of causality in AI, fostering a new generation of systems that reason about

cause and effect with both rigor and flexibility.

In conclusion, Causal Inferencing represents a novel synthesis of causal inference,

online learning, and AI, with robust theoretical guarantees and broad applicability. Its

development marks a step toward causally-aware AI systems that can support decision-

making in complex, real-world environments, from economic policy to medical diagnostics.

As AI continues to evolve, frameworks like Causal Inferencing will be essential for ensuring

that intelligent systems not only predict but also understand the causal mechanisms

underlying the world.
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A Proofs

In this appendix, we provide detailed proofs for the theoretical results presented in Section

3. Specifically, we prove Theorem 1 (consistency of causal effect estimation) and Theorem

2 (sublinear regret bound), leveraging the definitions and assumptions from Section 1.2

and the framework in Section 2.

A.1 Proof of Theorem 1

Theorem 3 (Consistency, restated). Suppose Assumptions 1.1 and 1.2 hold, and the

dataset Dt contains nt i.i.d. observations from the observational distribution P (V) induced

by the true structural causal model (SCM) M∗. Let θ̂t = Ê[Y |do(X = x)] be the estimated

causal effect under the selected SCM Mt ∈ Ht. Then, as nt → ∞,

θ̂t
p−→ E[Y |do(X = x)], (13)

where
p−→ denotes convergence in probability.

Proof. We aim to show that the causal effect estimator θ̂t, computed using the SCMMt ∈

Ht and dataset Dt, converges in probability to the true causal effect θ = E[Y |do(X = x)].

By Assumption 1.1, the causal effect is identifiable from the observational distribution

P (V) induced by M∗, meaning there exists a functional θ = g(P (V)) such that:

E[Y |do(X = x)] = g(P (V)). (14)
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For example, under the back-door criterion with confounder set Z, the functional is:

g(P (V)) =
∫

E[Y |X = x, Z = z]P (z) dz. (15)

The estimator θ̂t is computed by applying the same functional to the empirical dis-

tribution P̂t(V) derived from Dt:

θ̂t = g(P̂t(V)). (16)

Since Dt contains nt i.i.d. observations from P (V), the Glivenko-Cantelli theorem (van

der Vaart, 2000) ensures that the empirical distribution converges to the true distribution

in the supremum norm:

∥P̂t(V)− P (V)∥∞
p−→ 0 as nt → ∞. (17)

Moreover, by Assumption 1.2, the structural equations in M∗ are Lipschitz-continuous,

implying that the conditional expectation E[Y |X = x, Z = z] and the marginal distri-

bution P (z) are smooth functions of the underlying variables. This smoothness ensures

that the functional g is Lipschitz-continuous with respect to the total variation distance

∥ · ∥1, i.e., there exists a constant Lg > 0 such that:

|g(P1)− g(P2)| ≤ Lg∥P1 − P2∥1, (18)

for any distributions P1, P2.

Since the total variation distance is bounded by the supremum norm, we have:

∥P̂t(V)− P (V)∥1 ≤ ∥P̂t(V)− P (V)∥∞. (19)

Combining (18) and (19), the estimation error is:

|θ̂t − θ| = |g(P̂t(V))− g(P (V))| ≤ Lg∥P̂t(V)− P (V)∥1 ≤ Lg∥P̂t(V)− P (V)∥∞. (20)
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By (17), ∥P̂t(V)− P (V)∥∞
p−→ 0, so:

|θ̂t − θ| p−→ 0 as nt → ∞. (21)

Thus, θ̂t
p−→ θ, completing the proof.

The proof relies on the identifiability of the causal effect and the smoothness of the

SCM, ensuring that empirical estimates converge to the true effect as the sample size

grows. In practice, nt may be finite, but the result guarantees robustness for sufficiently

large datasets.

A.2 Proof of Theorem 2

Theorem 4 (Regret Bound, restated). Suppose Assumptions 1.1, 1.2, and the bounded

noise and sparse graph assumptions from Section 2.4 hold. Let the Causal Inferencing

algorithm select Mt ∈ Ht using an exponential weights strategy (e.g., Hedge algorithm

(Auer et al., 2002)). Then, the expected cumulative regret over T queries satisfies:

E[RT ] ≤ O
(√

TH logH
)
, (22)

where RT =
∑T

t=1 ℓt(rt, r
∗
t ), and H = |Ht|.

Proof. We model Causal Inferencing as a multi-armed bandit problem, where each SCM

M ∈ Ht is an arm, and the loss ℓt(rt, r
∗
t ) measures the error of the response rt (based on

Mt) relative to the oracle response r∗t (based on M∗). The loss is bounded, ℓt ∈ [0, B],

per Definition 4. The algorithm uses the Hedge algorithm (Auer et al., 2002), which

assigns weights to each M ∈ Ht:

wt(M) = exp

(
−η

t−1∑
s=1

ℓs(M)

)
, (23)

where η > 0 is the learning rate, and ℓs(M) is the loss incurred by M at time s. The
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algorithm selects Mt with probability:

pt(Mt) =
wt(Mt)∑

M∈Ht
wt(M)

. (24)

The cumulative regret is:

RT =
T∑
t=1

ℓt(rt, r
∗
t ) =

T∑
t=1

EMt∼pt [ℓt(Mt)]− min
M∈Ht

T∑
t=1

ℓt(M), (25)

where the expectation is over the randomized selection of Mt. The Hedge algorithm

guarantees an expected regret bound (Auer et al., 2002):

E[RT ] ≤
√

2TB2 logH +
B logH

η
, (26)

where H = |Ht|. To optimize the bound, we choose the learning rate:

η =

√
logH

2TB2
. (27)

Substituting η into (26):

E[RT ] ≤
√
2TB2 logH +B ·

√
2TB2

logH
· logH =

√
2TB2 logH +

√
2TB2 logH. (28)

Thus:

E[RT ] ≤ 2
√

2TB2 logH = O
(√

T logH
)
. (29)

To account for the hypothesis space size H, we note that the sparse graph assumption

(maximum in-degree d) implies H = O(|V|d+1), where |V| is the number of variables. For

sparse graphs (d ≤ log |V|), H is polynomial, and:

√
T logH ≤

√
T (d+ 1) log |V| ≤ O

(√
T log |V|

)
. (30)
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However, to reflect the dependence on H, we retain the general form:

E[RT ] ≤ O
(√

TH logH
)
. (31)

Assumption 1.2 ensures that the structural equations are stable, and the bounded

noise assumption (Var(Ui) ≤ σ2) guarantees that the loss ℓt is well-behaved, satisfying

the conditions for the Hedge algorithm. The finite hypothesis space (|Ht| ≤ H) ensures

that the bound holds uniformly across queries. Thus, the result follows.

This proof confirms that the average regret E[RT ]/T → 0 as T → ∞, reflecting the

algorithm’s ability to learn optimal causal hypotheses over time. The dependence on H

highlights the trade-off between exploration (larger H) and efficiency (smaller H).

B Causal DAG and Regret Plot

Figure 1: Causal DAG

Figure 2: Regret Plot

A Online Appendix: Scalability Enhancements for

Causal Inferencing

This online appendix addresses the computational scalability limitation of the Causal

Inferencing framework, as noted in Section 4.2. Specifically, we focus on the challenge

that the computational complexity, while polynomial for sparse graphs (Proposition 1),

scales with the size of the hypothesis space H, which can become prohibitive for queries

involving large numbers of variables or dense causal graphs. We propose two approaches

to mitigate this bottleneck: (A) approximate causal discovery to reduce the size of H, and

(B) hierarchical hypothesis spaces to prioritize plausible structural causal models (SCMs).

Each part provides theoretical analysis and discusses implications for the framework’s
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Figure 1: A causal directed acyclic graph (DAG) used in the Causal Inferencing frame-
work, as described in Section 2. The graph represents a structural causal model (SCM)
with treatment X, outcome Y , confounder Z, and covariate W . Edges indicate direct
causal relationships, and the back-door criterion (Assumption 1.1) enables identification
of the causal effect E[Y |do(X = x)].

performance.

A.1 Part A: Approximate Causal Discovery

The enumeration of candidate SCMs in the hypothesis space Ht, as described in Section

2.3, contributes significantly to the computational complexity of Causal Inferencing. For

a set of variables V with |V| = n, the number of possible directed acyclic graphs (DAGs)

grows super-exponentially, with H = O(nn/2) in the worst case (?). Even for sparse

graphs with maximum in-degree d, Proposition 1 yieldsH = O(nd+1), which is polynomial

but still costly for large n or d. To address this, we propose integrating approximate

causal discovery methods, such as score-based structure learning (Chickering, 2002), to

construct a reduced hypothesis space H′
t ⊂ Ht.
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Figure 2: Cumulative regret RT of the Causal Inferencing algorithm over T queries,
as analyzed in Theorem 2. The blue curve illustrates the sublinear regret bound
O(

√
TH logH), with H = 5 for visualization. The red dashed line represents a linear

baseline O(T ), highlighting the algorithm’s convergence to oracle performance (Section
3.2).

A.1.1 Score-Based Causal Discovery

Score-based causal discovery assigns a score to each DAG based on its fit to the data Dt

and selects a subset of high-scoring DAGs to form H′
t. A common scoring function is the

Bayesian Information Criterion (BIC) (?), defined for a DAG G as:

BIC(G,Dt) = logP (Dt|G, θ̂G)−
kG
2

log nt, (32)

where P (Dt|G, θ̂G) is the likelihood of the data given the maximum likelihood parameters

θ̂G, kG is the number of parameters in G, and nt = |Dt| is the sample size. The goal is to

select a small set of DAGs with high BIC scores, balancing model fit and complexity.

We adapt the greedy search algorithm of Chickering (2002), which iteratively modifies

the DAG by adding, removing, or reversing edges to maximize the BIC score, subject

to acyclicity constraints. The algorithm terminates when no further improvements are

possible, producing a set of H ′ ≪ H DAGs within a specified score threshold δ:

H′
t = {G ∈ Ht : BIC(G,Dt) ≥ max

G′
BIC(G ′,Dt)− δ}. (33)
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A.1.2 Modified Causal Inferencing Algorithm

The Causal Inferencing algorithm (Section 2.3) is modified to use H′
t instead of Ht:

1. Causal Model Construction: Apply the greedy search algorithm to construct

H′
t with |H′

t| ≤ H ′, using the BIC score and threshold δ. Incorporate user-specified

constraints Ct (e.g., fixed edges) to ensure consistency.

2. Causal Effect Estimation: For eachMt ∈ H′
t, estimate the causal effect E[Y |do(X =

x)] using do-calculus or adjustment formulas, as before.

3. Response Generation and Update: Select the SCM Mt with the highest BIC

score or lowest estimated loss, generate response rt, and update weights using the

Hedge algorithm.

The key advantage is that H ′ is significantly smaller than H, as the greedy search

explores only a subset of promising DAGs, reducing computational overhead.

A.1.3 Theoretical Analysis

We analyze the impact of approximate causal discovery on the consistency and regret

guarantees of Causal Inferencing.

Proposition 2 (Consistency with Approximate Discovery). Suppose Assumptions 1.1

and 1.2 hold, and the true SCM M∗ is included in H′
t with probability approaching 1 as

nt → ∞. Let θ̂t = Ê[Y |do(X = x)] be the estimated causal effect under Mt ∈ H′
t. Then,

as nt → ∞,

θ̂t
p−→ E[Y |do(X = x)]. (34)

Proof. By Theorem 1, consistency holds if M∗ ∈ Ht. The BIC score is consistent for

model selection (?), meaning that as nt → ∞, the DAG G∗ induced by M∗ maximizes

the BIC score with probability approaching 1. For a sufficiently small threshold δ, the

set H′
t includes G∗, ensuring M∗ ∈ H′

t. The proof then follows identically to Theorem 1,

as the estimator θ̂t = g(P̂t(V)) converges in probability to θ = g(P (V)).
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Proposition 3 (Regret with Approximate Discovery). Under the assumptions of Theo-

rem 2, using the modified algorithm with H′
t of size |H′

t| ≤ H ′, the expected cumulative

regret over T queries satisfies:

E[RT ] ≤ O
(√

TH ′ logH ′
)
. (35)

Proof. The proof follows Theorem 2, with H′
t replacing Ht. The Hedge algorithm’s regret

bound depends on the size of the hypothesis space, so replacing H with H ′ ≤ H yields:

E[RT ] ≤
√
2TB2 logH ′ +

B logH ′

η
, (36)

with η =
√

logH′

2TB2 . Simplifying, we obtain E[RT ] ≤ O(
√
TH ′ logH ′). Since H ′ ≪ H, the

regret is reduced, provided M∗ ∈ H′
t.

Proposition 4 (Computational Complexity with Approximate Discovery). The modi-

fied Causal Inferencing algorithm with score-based discovery runs in time O(n2nt +H ′ ·

poly(nt, n)) per query, where n = |V|, nt = |Dt|, and H ′ ≪ H.

Proof. The greedy search algorithm (Chickering, 2002) evaluates edge operations (add,

remove, reverse) on a DAG with n nodes, requiring O(n2) operations per iteration. Each

operation computes the BIC score, which takes O(nt) time for likelihood estimation.

Assuming a constant number of iterations (typical in practice), the construction of H′
t

takes O(n2nt). Causal effect estimation and response generation for H ′ hypotheses take

O(H ′ · poly(nt, n)), as in Proposition 1. The total runtime is O(n2nt +H ′ · poly(nt, n)),

significantly reduced due to H ′ ≪ H.

These results show that approximate causal discovery preserves the consistency and

sublinear regret guarantees while substantially reducing computational complexity, mak-

ing Causal Inferencing scalable for larger variable sets.
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A.2 Part B: Hierarchical Hypothesis Spaces

To further mitigate the computational burden of a large hypothesis space H, as high-

lighted in Section 4.2, we propose organizing the hypothesis space Ht into a hierarchical

structure. This approach prioritizes plausible structural causal models (SCMs) based on

shared causal properties, reducing the effective number of SCMs evaluated during infer-

ence. By leveraging a tree-based organization and bandit-inspired selection, we enhance

the scalability of Causal Inferencing for queries with large numbers of variables or dense

causal graphs.

A.2.1 Hierarchical Organization

We define a hierarchy over the hypothesis space Ht as a tree, where:

• Root Node: Represents the full hypothesis space Ht, containing all possible SCMs

consistent with the knowledge base K and user-specified constraints Ct.

• Internal Nodes: Represent clusters of SCMs grouped by coarse causal structures,

such as shared parent sets, adjustment sets, or high mutual information between

variables in the dataset Dt.

• Leaf Nodes: Represent individual SCMs, each corresponding to a specific directed

acyclic graph (DAG) G and its associated structural equations.

The hierarchy is constructed using a hierarchical clustering algorithm, adapted from

probabilistic graphical model learning (?). For a set of variables V with |V| = n, we

define a similarity metric between DAGs based on structural features, such as:

• Edge Overlap: Number of common edges between two DAGs.

• Parent Set Similarity: Jaccard similarity of parent sets for each variable.

• Data-Driven Scores: Mutual information or conditional independence tests from

Dt, reflecting likely causal relationships.

The clustering algorithm proceeds as follows:

32



1. Initialize Ht with a set of candidate DAGs, constrained by Ct (e.g., fixed edges or

forbidden cycles).

2. Compute pairwise similarities between DAGs using the above metrics.

3. Apply agglomerative clustering to group DAGs intoK clusters at each level, forming

a tree with depth D, where K and D are hyperparameters.

4. Assign each DAG to a leaf node, with internal nodes representing clusters of in-

creasing granularity.

The resulting tree has O(KD) leaves, where KD ≈ H in the worst case, but the hierar-

chical structure allows selective exploration of promising clusters.

A.2.2 Modified Causal Inferencing Algorithm

The Causal Inferencing algorithm (Section 2.3) is modified to exploit the hierarchical

structure:

1. Hierarchy Construction: At time t, construct the hierarchical tree over Ht using

the clustering algorithm, with K clusters per level and depth D. The construction

incorporates K, Ct, and Dt (if available) to ensure relevance.

2. Causal Model Selection: Use a hierarchical bandit strategy, such as the Up-

per Confidence Bound (UCB) algorithm adapted for tree structures (Kocsis and

Szepesvári, 2006), to select a cluster at each level. At the leaf level, sample an SCM

Mt from the selected cluster. The UCB score for a node (cluster or SCM) at time

t is:

UCBt(node) = µ̂t(node) + c

√
log t

Nt(node)
, (37)

where µ̂t(node) is the average reward (inverse loss) of the node, Nt(node) is the

number of times the node has been selected, and c > 0 is an exploration parameter.

3. Causal Effect Estimation: For the selected Mt, compute the causal effect

E[Y |do(X = x)] using do-calculus or adjustment formulas, as in Section 2.3.
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4. Response Generation and Update: Generate response rt, compute loss ℓt(rt, r
∗
t ),

and update the UCB scores for the selected SCM and its ancestor nodes in the hi-

erarchy.

This algorithm balances exploration (visiting under-explored clusters) and exploita-

tion (selecting high-reward SCMs), reducing the number of SCMs evaluated compared to

a flat hypothesis space.

A.2.3 Theoretical Analysis

We analyze the consistency, regret, and computational complexity of the modified algo-

rithm, ensuring that the hierarchical approach preserves the guarantees of the original

framework.

Proposition 5 (Consistency with Hierarchical Hypothesis Spaces). Suppose Assump-

tions 1.1 and 1.2 hold, and the true SCM M∗ is included in at least one leaf node of the

hierarchical tree with probability approaching 1 as nt → ∞. Let θ̂t = Ê[Y |do(X = x)] be

the estimated causal effect under Mt selected from the hierarchy. Then, as nt → ∞,

θ̂t
p−→ E[Y |do(X = x)]. (38)

Proof. The hierarchical clustering algorithm is designed to include all plausible DAGs

consistent with Ct and Dt. As nt → ∞, data-driven similarity metrics (e.g., mutual infor-

mation) ensure that the true DAG G∗ induced by M∗ is correctly clustered, with prob-

ability approaching 1, due to the consistency of conditional independence tests (Spirtes

et al., 2000). Thus, M∗ resides in a leaf node. The UCB selection process does not

exclude any SCM, so the proof follows Theorem 1: the estimator θ̂t = g(P̂t(V)) converges

in probability to θ = g(P (V)), as the empirical distribution P̂t(V) converges to P (V).

Proposition 6 (Regret with Hierarchical Hypothesis Spaces). Under the assumptions

of Theorem 2, using the modified algorithm with a hierarchical tree of depth D and K
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clusters per level, the expected cumulative regret over T queries satisfies:

E[RT ] ≤ O
(√

TKD log(KD)
)
. (39)

Proof. Wemodel the hierarchical selection as a tree bandit problem (Kocsis and Szepesvári,

2006), where each node in the tree is an arm, and the leaves correspond to SCMs in Ht.

The UCB algorithm explores the tree top-down, selecting a path to a leaf (SCM) at each

time t. The total number of arms (leaves) is H ≈ KD, but the hierarchical structure re-

duces exploration by prioritizing high-reward clusters. The regret bound for tree bandits

with depth D and branching factor K is (Lattimore and Szepesvári, 2020):

E[RT ] ≤ O
(√

TKD logN
)
, (40)

where N = KD is the number of leaves. Substituting logN = D logK, we get:

E[RT ] ≤ O
(√

TKD ·D logK
)
= O

(√
TKD2 logK

)
. (41)

For balanced trees (e.g., D = logK H), this simplifies to:

E[RT ] ≤ O
(√

TK logH logK
)
. (42)

To maintain generality, we use the conservative boundO(
√

TKD log(KD)). The bounded

noise and Lipschitz continuity assumptions ensure stable losses, satisfying the conditions

for the tree bandit framework.

Proposition 7 (Computational Complexity with Hierarchical Hypothesis Spaces). The

modified Causal Inferencing algorithm with a hierarchical tree of depth D and K clusters

per level runs in time O(n2nt +KD · poly(nt, n)) per query, where n = |V|, nt = |Dt|.

Proof. The computational cost comprises:

1. Hierarchy Construction: Hierarchical clustering requires computing pairwise

similarities for a subset of DAGs, sampled to limit H (e.g., using initial constraint-
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based filtering (Spirtes et al., 2000)). For n variables, similarity computation (e.g.,

mutual information) takes O(n2nt). Clustering into K groups over D levels takes

O(n2 logK), assuming efficient agglomerative clustering (?). Total cost: O(n2nt).

2. Causal Model Selection: UCB selection traverses D levels, evaluating K clusters

per level, with constant-time score updates per node. Total cost: O(KD).

3. Effect Estimation and Response: Estimating the causal effect for the selected

SCM takes O(poly(nt, n)), as in Proposition 1. Only one SCM is evaluated per

query, unlike H ′ in Part A.

The total runtime is O(n2nt + KD · poly(nt, n)). For small K and D (e.g., K =
√
n,

D = log n), this is significantly less than O(nd+1nt) for large d.

The hierarchical approach offers a complementary solution to approximate causal

discovery (Part A). By structuring Ht as a tree, it reduces the number of SCMs evaluated

per query to one, with exploration guided by the UCB algorithm. The regret bound

depends onK andD, which can be tuned to balance exploration and efficiency. Compared

to Part A, which evaluates H ′ SCMs, Part B is more efficient for sparse queries but

requires careful hierarchy design to ensure M∗ is included.

A.2.4 Conclusion

This online appendix addresses the scalability challenges of Causal Inferencing by propos-

ing two complementary approaches. Part A demonstrates that approximate causal dis-

covery, using score-based methods, reduces the hypothesis space to H ′ ≪ H, achiev-

ing a complexity of O(n2nt + H ′ · poly(nt, n)) while preserving consistency and sub-

linear regret. Part B introduces a hierarchical hypothesis space, with a complexity of

O(n2nt + KD · poly(nt, n)), leveraging tree-based bandits to prioritize plausible SCMs.

Both approaches enhance the framework’s applicability to large-scale problems, address-

ing the concerns raised in Section 4.2. Future work could combine these methods, using

approximate discovery to initialize the hierarchy, further optimizing performance.
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.1 Part C: Tighter Regret Bounds

The regret bounds derived in Section 3.2 (Theorem 2, O(
√
TH logH)), Section A.1

(Proposition 3, O(
√
TH ′ logH ′)), and Section A.2 (Proposition 6, O(

√
TKD log(KD)))

provide sublinear guarantees for the Causal Inferencing framework. However, the depen-

dence on the hypothesis space size (H, H ′, or KD) can be significant for large variable

sets or complex causal graphs, as noted in Section 4.2. In this part, we introduce stronger

assumptions to derive tighter regret bounds, reducing the dependence on these parame-

ters and achieving bounds closer to O(
√
T ) in favorable settings. We analyze the original

algorithm, the approximate causal discovery approach (Part A), and the hierarchical

hypothesis space approach (Part B) under these assumptions.

.1.1 Stronger Assumptions

To achieve tighter regret bounds, we introduce two additional assumptions that strengthen

those in Section 2.4:

Assumption .1 (Low-Variance Noise). The exogenous noise variables Ui in the true

SCM M∗ have low variance, such that Var(Ui) ≤ σ2, where σ2 ≪ 1. This implies that

the causal effects E[Y |do(X = x)] have reduced variability across similar SCMs.

Assumption .2 (High-Quality Initial Clustering). The knowledge base K or dataset Dt

provides a high-quality initial clustering of the hypothesis space Ht, such that the true

SCM M∗ resides in a small subset of clusters (or a single cluster) with high probability.

Formally, there exists a subset H∗
t ⊂ Ht with |H∗

t | ≤ H∗ ≪ H, containing M∗, and the

clustering algorithm identifies H∗
t with probability at least 1− ϵ, for small ϵ > 0.

Assumption .1 reduces the variability in loss functions across SCMs, enabling more

precise selection of high-performing models. Assumption .2 ensures that the hypothesis

space can be effectively partitioned, limiting exploration to a smaller, high-quality subset.

These assumptions are realistic in settings with strong prior knowledge (e.g., econometric

models with known confounders) or high-quality data (e.g., large nt).
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.1.2 Tighter Regret Analysis

We derive a unified regret bound that applies to the original algorithm (Section 2.2), the

approximate causal discovery approach (Section A.1), and the hierarchical hypothesis

space approach (Section A.2). The key insight is to leverage the low-variance noise and

high-quality clustering to reduce the effective hypothesis space size, resulting in a regret

bound that depends on H∗ rather than H, H ′, or KD.

Proposition 8 (Tighter Regret Bound). Suppose Assumptions 1.1, 1.2, .1, .2, and the

bounded noise and sparse graph assumptions from Section 2.4 hold. Let the Causal In-

ferencing algorithm (or its modified versions in Parts A and B) select Mt using an

exponential weights strategy (e.g., Hedge for the original and approximate discovery al-

gorithms, or UCB for the hierarchical algorithm). Then, the expected cumulative regret

over T queries satisfies:

E[RT ] ≤ O
(√

TH∗ logH∗ + ϵT
)
, (43)

where H∗ ≪ H is the size of the high-quality subset H∗
t , and ϵ > 0 is the clustering error

probability.

Proof. We extend the regret analysis from Theorem 2, Proposition 3, and Proposition 6,

incorporating Assumptions .1 and .2. The Causal Inferencing algorithm operates over a

hypothesis space Ht, reduced space H′
t, or hierarchical tree, but we focus on the effective

subset H∗
t ⊂ Ht containing M∗.

By Assumption .2, the clustering algorithm (e.g., BIC-based in Part A, hierarchical

in Part B) identifies H∗
t with probability 1− ϵ, where |H∗

t | ≤ H∗. In the low-probability

event (probability ϵ) that M∗ /∈ H∗
t , the algorithm incurs a bounded loss ℓt ∈ [0, B],

contributing at most ϵTB to the regret. Thus, we analyze the regret conditional on

M∗ ∈ H∗
t .

For the original algorithm (Section 2.2), the Hedge algorithm (Auer et al., 2002) is

applied to Ht. By Assumption .1, the low variance σ2 ≪ 1 implies that SCMs in H∗
t have

similar causal effects, reducing the variance of the loss ℓt(Mt). This allows us to treat
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H∗
t as the effective hypothesis space. The Hedge regret bound becomes:

E[RT |M∗ ∈ H∗
t ] ≤

√
2TB2 logH∗ +

B logH∗

η
, (44)

with η =
√

logH∗

2TB2 . Simplifying:

E[RT |M∗ ∈ H∗
t ] ≤ O

(√
TH∗ logH∗

)
. (45)

The unconditional regret is:

E[RT ] ≤ (1− ϵ) ·O
(√

TH∗ logH∗
)
+ ϵ · TB ≤ O

(√
TH∗ logH∗ + ϵT

)
. (46)

For the approximate causal discovery approach (Part A), the reduced space H′
t is

constructed using BIC scores. Assumption .2 ensures that H′
t ⊆ H∗

t , as the BIC score is

consistent and prioritizes M∗. The regret bound from Proposition 3 is updated to use

H∗ instead of H ′, yielding the same form: O(
√
TH∗ logH∗ + ϵT ).

For the hierarchical hypothesis space approach (Part B), the tree bandit algorithm

(UCB) navigates a hierarchy with K clusters per level and depth D. Assumption .2

implies that M∗ resides in a small number of clusters (e.g., one cluster at each level),

reducing the effective branching factor. The tree bandit regret bound (Lattimore and

Szepesvári, 2020) is modified to account for the effective number of leaves H∗, rather

than KD. The bound becomes:

E[RT |M∗ ∈ H∗
t ] ≤ O

(√
TH∗ logH∗

)
, (47)

with the same unconditional bound O(
√
TH∗ logH∗ + ϵT ).

The low-variance assumption ensures that losses are tightly concentrated, supporting

the application of the Hedge or UCB algorithms. The sparse graph assumption (Section

2.4) ensures H∗ is polynomial in n, and ϵ can be made arbitrarily small with high-quality

clustering (e.g., ϵ = O(1/nt)). Thus, the unified bound holds across all variants.
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.1.3 Discussion

The tighter regret bound O(
√
TH∗ logH∗+ϵT ) significantly improves on previous bounds

by reducing the dependence on H, H ′, or KD. When H∗ is small (e.g., H∗ = O(log n))

and ϵ is negligible (e.g., ϵ = O(1/nt)), the bound approaches O(
√
T log n), nearly match-

ing the optimal O(
√
T ) for bandit problems with a single optimal arm (Lattimore and

Szepesvári, 2020). The low-variance noise assumption ensures that SCMs in H∗
t are

close in performance to M∗, while the high-quality clustering assumption leverages prior

knowledge or data to focus exploration on a small, high-quality subset. This makes

the framework particularly effective in econometric applications with strong priors (e.g.,

known confounders in policy evaluation) or large datasets.

The trade-off is that Assumptions .1 and .2 may not hold in all settings. For instance,

high-variance noise or poor initial clustering could increase H∗ or ϵ, degrading the bound.

Future work could explore adaptive clustering methods or robust noise estimation to relax

these assumptions.

.1.4 Conclusion

This online appendix enhances the scalability and performance of Causal Inferencing.

Part A uses approximate causal discovery to reduce the hypothesis space to H ′ ≪ H,

achieving a complexity of O(n2nt + H ′ · poly(nt, n)). Part B introduces a hierarchical

hypothesis space, with a complexity of O(n2nt +KD · poly(nt, n)), prioritizing plausible

SCMs via tree-based bandits. Part C derives a tighter regret boundO(
√
TH∗ logH∗+ϵT ),

applicable to all variants, leveraging low-variance noise and high-quality clustering to

reduce dependence on the hypothesis space size. Together, these enhancements address

the scalability concerns raised in Section 4.2, making Causal Inferencing a robust and

efficient framework for causally-informed AI in large-scale settings.

Notation Table

The following table summarizes key symbols and terms used throughout the paper.
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Table 1: Notation and Terminology

Symbol/Term Description

V Set of endogenous variables in an SCM, V = {V1, . . . , Vn}.
M Structural causal model (SCM), M = (V ,F ,PU).
M∗ True SCM governing the data-generating process.
G Directed acyclic graph (DAG), G = (V , E), induced by an SCM.
Ht Hypothesis space of SCMs at time t, with size |Ht| ≤ H.
H′

t Reduced hypothesis space via approximate causal discovery, with size H ′ ≪ H.
H∗

t High-quality subset of Ht containing M∗, with size H∗ ≪ H.
qt Query at time t, e.g., a natural language request for causal explanation.
Ct User-specified causal constraints, e.g., fixed edges or confounders.
Dt Dataset at time t, with nt = |Dt| observations.
K Pre-trained knowledge base encoding probabilistic relationships.
rt, r

∗
t Response generated at time t, and oracle response under M∗.

E[Y |do(X = x)] Causal effect of X on Y under intervention do(X = x).
ℓt(rt, r

∗
t ) Loss function at time t, bounded by [0, B].

RT Cumulative regret, RT =
∑T

t=1 ℓt(rt, r
∗
t ).

H,H ′, H∗ Sizes of hypothesis spaces Ht, H′
t, and H∗

t .
K,D Number of clusters per level and depth of the hierarchical tree in Part B.
σ2 Variance bound of exogenous noise variables Ui.
L Lipschitz constant for structural equations in an SCM.
ϵ Clustering error probability in high-quality clustering (Part C).

Figure 3: Flowchart of Hierarchical Algorithm
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Start: Receive query qt,
constraints Ct, dataset Dt

Construct hierarchical tree
over Ht using clustering

Select cluster using UCB
at current tree level

Reached leaf node?

Move to next tree level
Select SCM Mt,

estimate causal effect

Generate response rt,
compute loss ℓt

Update UCB scores for
selected SCM and clusters

End: Output rt,
proceed to next query

No Yes

Figure 3: Flowchart of the modified Causal Inferencing algorithm using hierarchical hy-
pothesis spaces, as described in Section A.2. The algorithm constructs a hierarchical tree
over the hypothesis space Ht, selects clusters using the Upper Confidence Bound (UCB)
strategy, and estimates causal effects for the chosen SCM Mt. The process iterates until
a response rt is generated and UCB scores are updated, supporting the regret bound in
Proposition 6.
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