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Abstract

Large Language Models (LLMs) have transformed natural language processing,
yet their internal mechanisms remain opaque, posing challenges for interpretability
and optimization. Recent work has applied biological analogies to dissect LLM
reasoning through computational graphs, revealing how circuits contribute to be-
haviors like hallucinations. However, these insights lack a framework to evaluate
their practical and societal implications. In this paper, we propose an economic lens
to complement this biological approach, unpacking the economics of large language
models in the process. We develop a novel methodology to analyze LLMs as eco-
nomic systems, where circuits compete for computational resources (e.g., attention,
activations) under constraints, akin to agents in a marketplace. To illustrate our
approach, we present a case study with a hypothetical 1-billion-parameter LLM,
EcoNet-1B, quantifying the costs and benefits of reasoning pathways identified in
prior work. Using cost-benefit analysis and Value-at-Risk, we assess failure modes
like hallucinations, showing that fine-tuning a “factual recall” circuit reduces hal-
lucination rates by 15% (from 20% to 17%) at a compute cost of 5% of the original
training ($500), yielding annual savings of $1.095 million in a customer support
application. We further model the LLM as an ecosystem, where circuits “trade”
influence to shape outputs, identifying “market failures” that lead to errors and
offering economically grounded strategies to mitigate them. By bridging biology
and economics, this work provides a unified bioeconomic framework to prioritize
interpretability efforts, reduce societal risks, and guide sustainable LLM develop-
ment. Our approach not only enhances the mechanistic understanding of LLMs but
also makes their internal dynamics more actionable for engineers and policymakers,
fostering broader engagement with interpretability research.
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1 Introduction

Large Language Models (LLMs) have revolutionized natural language processing, en-

abling unprecedented capabilities in tasks ranging from text generation to question an-

swering and decision support (Brown et al., 2020; Raffel et al., 2020). As these models

scale in size and complexity—reaching billions or even trillions of parameters—their in-

ternal mechanisms have become increasingly opaque, often described as “black boxes”

(Rudin, 2019). This lack of transparency poses significant challenges for reliability,

safety, and societal impact, particularly as LLMs are deployed in high-stakes domains

such as healthcare, finance, and education (Bommasani et al., 2021). For instance,

LLMs frequently exhibit hallucinations—generating factually incorrect or unsupported

outputs—leading to risks like misinformation or costly errors in real-world applications

(Ji et al., 2023; Visual Capitalist, 2025). Understanding and mitigating these failure

modes requires moving beyond surface-level performance metrics to a deeper mechanistic

understanding of how LLMs reason and make decisions.

Recent advances in interpretability have begun to address this challenge by dissecting

the internal workings of LLMs. A landmark contribution in this space is Lindsey et al.,

(2025), which applies a biological analogy to study LLMs as complex organisms. Using

novel techniques like circuit tracing, the authors map computational graphs within Claude

3.5 Haiku, revealing how distinct circuits handle multi-step reasoning and contribute to

behaviors such as hallucinations. For example, they identify “known answer” circuits

that misfire when the model recognizes a name but lacks sufficient details, leading to

incorrect outputs. This biological framework provides a powerful lens for understanding

LLM reasoning, offering insights into the modular structures that underpin their capa-

bilities. However, while this approach excels at describing how LLMs function internally,

it does not fully address the practical implications of these mechanisms—such as the

computational costs of maintaining certain circuits, the economic risks of failure modes,

or the trade-offs involved in optimizing model behavior.

In this paper, we propose a complementary perspective: an economic framework for

analyzing LLMs. We introduce the economics of large language models which treats LLMs
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as economic systems where circuits compete for computational resources (e.g., attention,

activations) under constraints, akin to agents in a marketplace. This lens allows us to

quantify the costs (e.g., energy, compute time, and other) and benefits (e.g., accuracy,

robustness, risk reduction) of LLM reasoning pathways, providing a practical framework

to prioritize interpretability efforts and guide model optimization.

Our approach builds on biological insights in the literature by asking not just how

circuits operate, but what they cost and what value they provide—both to the model’s

performance and to its societal applications. For instance, while Lindsey et al., (2025)

identifies a circuit responsible for hallucinations, we aim to evaluate the economic cost

of such errors in a customer support context and the return on investment of mitigating

them through fine-tuning. The need for an economic perspective is underscored by the

growing complexity and societal stakes of LLMs. As models scale, their training and

inference costs soar—GPT-3’s training alone emitted 500 metric tons of CO2 (Lajavaness,

2024)—raising concerns about sustainability and accessibility (Trabelsi, 2023).

Simultaneously, the economic impact of LLM failures is becoming more pronounced,

with hallucinations potentially costing businesses millions in high-stakes applications (Gu

et al., 2020). Despite these challenges, the AI research community has been slow to en-

gage with interpretability studies, as noted in recent discussions (austinc3301, 2025). By

framing LLM behavior in economic terms, we aim to make interpretability more action-

able and relevant, bridging the gap between mechanistic understanding and practical

deployment. To illustrate our approach, we present a case study with a hypothetical 1-

billion-parameter LLM, EcoNet-1B, designed to reflect the characteristics of lightweight

models. We apply our economic framework to analyze and optimize a “factual recall”

circuit responsible for hallucinations, demonstrating how fine-tuning can reduce halluci-

nation rates by 15% at a compute cost of 5% of the original training, yielding significant

economic benefits in a customer support application. This case study serves as a proof of

concept, showing how economic analysis can complement biological insights to enhance

LLM reliability and sustainability.

The remainder of this paper is structured as follows. Section 2 reviews related work on
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LLM interpretability and economic analyses of AI systems, positioning our contribution at

the intersection of these fields. Section 3 presents our economic framework, detailing the

methodology for modeling LLMs as economic systems and quantifying circuit-level costs

and benefits. Section 4 describes the EcoNet-1B case study, applying our framework

to optimize model behavior and assess its economic impact. Section 5 discusses the

implications of our findings for LLM development, safety, and societal deployment, while

Section 6 concludes with directions for future research. By integrating biological and

economic perspectives, we aim to provide a unified bioeconomic framework that not

only deepens our understanding of LLMs but also makes their internal dynamics more

actionable for engineers, policymakers, and researchers seeking to build more reliable and

sustainable AI systems.

2 Related Work

2.1 Interpretability in Large Language Models

The rapid advancement of Large Language Models (LLMs) has spurred significant inter-

est in understanding their internal mechanisms, a field broadly termed interpretability.

Early interpretability efforts focused on post-hoc explanations, such as attention visual-

ization (Vaswani et al., 2017) and feature importance scores (Ribeiro et al., 2016), which

provide insights into model decisions but often fail to capture the underlying reasoning

processes. More recently, the field of mechanistic interpretability has emerged, aiming to

reverse-engineer LLMs by mapping their computational graphs and identifying modular

structures, or “circuits,” that handle specific tasks (Olah et al., 2020; Elhage et al., 2021).

A seminal contribution in this space is Lindsey et al., (2025), which adopts a biological

analogy to study LLMs as complex organisms. Using a technique called circuit tracing,

the authors dissect Claude 3.5 Haiku, a lightweight production model, to reveal how its

reasoning unfolds across multiple steps. For example, they identify language-specific and

language-independent circuits, showing that the latter dominate in larger models like

Claude 3.5 Haiku, and pinpoint failure modes such as hallucinations caused by misfiring
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“known answer” circuits (Lindsey et al, 2025). This biological framework provides a rich,

human-understandable description of LLM behavior, enabling researchers to diagnose

issues like factual inaccuracies in a manner akin to medical diagnostics. However, the

approach is primarily descriptive, focusing on how circuits operate rather than evaluating

their practical implications—such as the computational resources they consume or the

economic risks they pose in real-world applications.

Other mechanistic interpretability studies have similarly advanced our understanding

of LLMs. Elhage et al. (2021) identified induction heads in transformer models, circuits

responsible for pattern-matchinging tasks, while Bricken et al. (2023) explored sparse

coding techniques to extract interpretable features from LLMs. Despite these advances,

challenges remain. Manual circuit tracing is labor-intensive and struggles to generalize

across prompts, limiting its scalability. Our work seeks to address such gaps by introduc-

ing an economic lens that makes interpretability more actionable, quantifying the costs

and benefits of circuits to prioritize optimization efforts.

2.2 Economic Analyses of AI Systems

Parallel to interpretability research, a growing body of work has examined the economics

of AI systems, focusing on their computational costs, societal impacts, and risk pro-

files. The computational cost of training and deploying LLMs has been a major concern,

particularly as models scale. Strubell et al. (2019) estimated that training a single trans-

former model can emit as much CO2 as five cars over their lifetimes, a finding echoed by

Lajavaness (2024), which notes that GPT-3’s training alone produced 500 metric tons of

CO2. These costs extend beyond training to inference, with idle models in deployment

adding to the economic and environmental burden (Li, 2023). Such analyses highlight

the need for sustainable AI development, a priority also emphasized in the bioeconomy

literature, which advocates for leveraging technology to mitigate environmental impacts

(World Economic Forum, 2025).

Economic studies have also explored the societal impacts of AI. Acemoglu and Re-

strepo (2016) examined how AI-driven automation affects labor markets, identifying risks
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like job polarization and inequality, while the Bank for International Settlements (BIS,

2024) investigated LLMs’ applications in economics, such as forecasting and policy anal-

ysis, noting the potential for fine-tuning to improve performance in specific domains.

However, these studies often treat AI systems as black boxes, focusing on external out-

comes rather than internal mechanisms. For example, while BIS (2024) highlights the

benefits of fine-tuning, it does not address the cost of such interventions at the circuit

level, nor does it quantify the economic risks of LLM failures like hallucinations.

Risk assessment frameworks offer another lens for economic analysis. Gu et al. (2020)

proposed a Value-at-Risk (VaR) approach to quantify the economic impact of machine

learning model failures, using Shapley values and boosted trees to estimate losses in finan-

cial applications. This method is particularly relevant for LLMs, where hallucinations can

lead to significant costs—e.g., incorrect financial advice or customer support errors. The

Visual Capitalist (2025) reports that 70% of business leaders are concerned about LLM

hallucinations, underscoring the need for economic models that can assess and mitigate

these risks. However, existing frameworks rarely integrate with interpretability research,

missing the opportunity to connect internal model behaviors (e.g., specific circuits) with

external economic outcomes.

2.3 The Intersection of Interpretability and Economics

The intersection of interpretability and economic analysis remains underexplored, yet it

holds significant potential for advancing LLM development. Some preliminary efforts

have bridged these fields. For instance, Trabelsi (2023) advocates for integrating sustain-

ability metrics into AI design, suggesting that interpretability can help identify resource-

intensive components, though it does not provide a concrete methodology. Similarly, the

Sanger Institute (2024) discusses federated learning and human-in-the-loop approaches

to optimize AI systems, hinting at the role of interpretability in resource allocation, but

without an economic framing.

Our work builds on these ideas by explicitly combining mechanistic interpretability

with economic analysis. We draw from biological frameworks, which provides a detailed
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map of LLM circuits, and extend it with economic principles to evaluate the costs, ben-

efits, and risks of those circuits. Unlike prior economic studies that treat LLMs as black

boxes (e.g., BIS, 2024; Li, 2023), we leverage interpretability to open the black box,

enabling a granular analysis of resource allocation at the circuit level. For example,

while Lajavaness (2024) quantifies the overall carbon footprint of LLM training, we aim

to break down these costs by circuit, identifying which components are most resource-

intensive and offering economically grounded strategies to optimize them. Moreover, our

approach addresses the societal and practical challenges highlighted in recent discussions.

There may be inadequate engagement with the AI interpretability literature from

other AI domains, perhaps due to the complexity and volume of findings. By framing in-

terpretability in economic terms—e.g., quantifying the return on investment of fine-tuning

a circuit—we aim to make these insights more accessible and actionable for engineers and

policymakers alike. Additionally, we tackle the economic risks of LLM failures, building

on frameworks like Gu et al. (2020) to assess the cost of hallucinations in real-world

applications, such as customer support, and propose mitigation strategies informed by

circuit-level insights.

2.4 Gaps and Opportunities

Despite the progress in both interpretability and economic analysis, several gaps remain.

First, mechanistic interpretability studies like Lindsey et al. (2025) provide detailed de-

scriptions of LLM behavior but lack frameworks to evaluate the practical implications of

their findings, such as the computational cost of maintaining certain circuits or the eco-

nomic impact of their failures. Second, economic analyses of AI systems often overlook

the internal mechanisms of models, treating them as black boxes and missing oppor-

tunities to optimize resource allocation at a granular level. Third, there is a lack of

cross-disciplinary approaches that integrate interpretability and economics, limiting the

ability to address both technical and societal challenges holistically.

Our paper fills these gaps by introducing a novel economic framework for LLMs, build-

ing on the biological insights of Lindsey et al (2025) to quantify the costs and benefits of
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circuits and assess their economic impact. Through a case study with a hypothetical LLM,

EcoNet-1B, we demonstrate how this framework can optimize model behavior—e.g., re-

ducing hallucinations through targeted fine-tuning—while providing economic insights

that make interpretability more actionable. By bridging biology and economics, we pro-

pose a unified bioeconomic approach that not only deepens our understanding of LLMs

but also guides their development toward greater reliability, sustainability, and societal

benefit.

3 Methodology

In this section, we present our economic framework for analyzing Large Language Models

(LLMs). We treat LLMs as economic systems where circuits compete for computational

resources under constraints, akin to agents in a marketplace. Our methodology quantifies

the costs and benefits of individual circuits, enabling a granular analysis of resource allo-

cation, performance optimization, and risk mitigation. We formalize this framework using

economic principles such as cost-benefit analysis and Value-at-Risk (VaR), providing a

systematic approach to enhance LLM reliability and sustainability.

3.1 Economic Framework for LLMs

We conceptualize an LLM as an economic system composed of N circuits, denoted as

C = {c1, c2, . . . , cN}, where each circuit ci represents a modular component responsible

for a specific task (e.g., factual recall, contextual reasoning). These circuits compete

for computational resources, such as attention weights, activations, and memory, during

inference. The total resource budget of the LLM, denoted R, is finite and must be

allocated across all circuits to produce an output. We define the resource allocation to

circuit ci as ri, where
∑N

i=1 ri ≤ R.

Each circuit ci incurs a computational cost, ki, which includes:

• Compute Cost: The GPU-hours required to execute ci, denoted kcomp
i , typically

measured in FLOPs (floating-point operations).
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• Environmental Cost: The carbon footprint of ci, denoted kenv
i , measured in kg

CO2 emitted per GPU-hour.

The total cost of circuit ci is thus:

ki = kcomp
i + α · kenv

i , (1)

where α is a monetization factor (e.g., $50/ton of CO2, a typical carbon price in 2025)

that converts environmental impact into monetary terms.

The benefit of circuit ci, denoted bi, is defined in terms of its contribution to the

LLM’s performance, such as accuracy or robustness. For a given task (e.g., factual

question answering), we measure bi as the reduction in error rate attributable to ci. Let

E0 be the baseline error rate of the LLM without ci (e.g., hallucination rate), and Ei be

the error rate when ci is active. The benefit is:

bi = β · (E0 − Ei), (2)

where β is a scaling factor that converts error reduction into a monetary or utility value

(e.g., the economic value of avoiding an error in a specific application).

3.2 Modeling LLMs as Economic Systems

To model the LLM as an economic system, we treat the interaction of circuits as a mar-

ketplace where each circuit ci “bids” for resources ri based on its expected contribution

to the output. The LLM’s attention mechanism acts as a market regulator, allocating

resources to maximize overall performance. However, this allocation can lead to “mar-

ket failures”—situations where a suboptimal circuit dominates, resulting in errors like

hallucinations. For example, a “factual recall” circuit may over-activate on incomplete

knowledge, leading to incorrect outputs.

We formalize this market dynamics using a utility function for each circuit. The utility
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of circuit ci, denoted ui, balances its benefit and cost:

ui = bi − γ · ki, (3)

where γ is a weighting factor that reflects the trade-off between performance and cost

(e.g., γ = 1 for equal weighting). The LLM optimizes resource allocation by maximizing

the total utility across all circuits:

max
{ri}

N∑
i=1

ui, subject to
N∑
i=1

ri ≤ R. (4)

This optimization problem can be solved using techniques like gradient descent or con-

strained optimization, depending on the LLM’s architecture and attention mechanism.

3.3 Cost-Benefit Analysis of Circuits

To prioritize optimization efforts, we perform a cost-benefit analysis for each circuit ci.

The net benefit of ci is defined as:

Net Benefiti = bi − ki. (5)

Circuits with a high net benefit are candidates for preservation or enhancement (e.g., fine-

tuning), while those with a low or negative net benefit may be pruned or restructured

to improve efficiency. For example, a circuit causing frequent hallucinations may have

a high ki (due to wasted compute) and low bi (due to increased errors), resulting in a

negative net benefit.

Fine-tuning a circuit involves retraining its parameters to improve its performance.

Let kft
i be the fine-tuning cost for ci, typically a fraction of the original training cost (e.g.,

5% of total compute). The post-fine-tuning benefit, bfti , reflects the improved error rate,

Eft
i . The return on investment (ROI) of fine-tuning is:

ROIi =
bfti − bi
kft
i

. (6)
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A high ROI indicates that fine-tuning ci is economically viable, providing a practical

metric for engineers to prioritize interventions.

3.4 Value-at-Risk for LLM Failures

To assess the economic risks of LLM failures, we adapt the Value-at-Risk (VaR) frame-

work from financial risk analysis (GKX20). We focus on hallucinations, a common failure

mode where the LLM generates incorrect outputs. Let Perror be the probability of a hal-

lucination (e.g., 20% in factual queries), and Lerror be the economic loss per incident (e.g.,

$100 for a customer support error). For a workload of Q queries per day, the expected

daily loss is:

Expected Loss = Q · Perror · Lerror. (7)

The VaR at confidence level α (e.g., 95%) estimates the maximum potential loss over a

given period, accounting for the distribution of errors. Assuming a binomial distribution

for errors, the VaR is:

VaRα = Q · Lerror · Bin−1(α;Q,Perror), (8)

where Bin−1(α;Q,Perror) is the inverse cumulative distribution function of the binomial

distribution at confidence level α.

By applying interventions like fine-tuning, we reduce Perror to P ft
error, updating the

expected loss and VaR accordingly. The economic benefit of the intervention is the

reduction in expected loss, which we compare against the fine-tuning cost to evaluate its

viability.

3.5 Summary of Methodology

Our methodology proceeds in four steps:

1. Circuit Identification: Use mechanistic interpretability (e.g., circuit tracing (LGA+25))

to identify circuits C = {c1, . . . , cN} and their resource allocations {ri}.
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2. Cost and Benefit Quantification: Compute ki and bi for each circuit using

Equations (1) and (2).

3. Market Dynamics Modeling: Model the LLM as an economic system, optimiz-

ing resource allocation via Equation (4) and identifying market failures.

4. Cost-Benefit and Risk Analysis: Perform cost-benefit analysis (Equation (5))

and VaR (Equation (8)) to prioritize interventions like fine-tuning, evaluating their

ROI (Equation (6)).

This framework provides a systematic approach to analyze LLMs economically, en-

abling targeted optimizations that balance performance, cost, and risk. In the next

section, we apply this methodology to a hypothetical LLM, EcoNet-1B, to demonstrate

its practical utility.

4 Case Study: EcoNet-1B

In this section, we apply our economic framework to a hypothetical 1-billion-parameter

LLM, EcoNet-1B, designed to reflect the characteristics of lightweight production models.

We focus on a common failure mode—hallucinations in factual queries—and demonstrate

how our methodology can quantify the costs and benefits of optimizing a specific circuit,

assess the economic risks of failures, and guide targeted interventions. This case study

serves as a proof of concept, illustrating the practical utility of our bioeconomic approach

for enhancing LLM reliability and sustainability.

4.1 EcoNet-1B Overview

Suppose EcoNet-1B is a 1-billion-parameter transformer-based LLM, pre-trained on 500

billion tokens of diverse text data (e.g., web pages, books, and public-domain datasets).

The model is designed for lightweight applications, similar to Claude 3.5 Haiku and others

in its class, with an architecture comprising 12 layers, 16 attention heads per layer, and a

hidden dimension of 1024. Training EcoNet-1B required 10,000 GPU-hours on NVIDIA
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A100 GPUs, costing $10,000 at a rate of $1 per GPU-hour, a typical cloud compute

cost in 2025 (Laj24). The carbon footprint of training is estimated at 0.5 kg CO2 per

GPU-hour, totaling 5,000 kg CO2 (or 5 metric tons).

Using mechanistic interpretability techniques akin to circuit tracing (LGA+25), we

identify N = 50 distinct circuits in EcoNet-1B, each responsible for specific tasks such

as factual recall, contextual reasoning, and language generation. For this case study, we

focus on a “factual recall” circuit, cfr, which constitutes 5% of the model’s parameters

(50 million parameters). This circuit activates during factual question answering but

frequently misfires when the model has incomplete knowledge, leading to hallucinations.

On the TruthfulQA benchmark (LHE21), EcoNet-1B exhibits a hallucination rate of

Perror = 20%, meaning 20% of its factual responses are incorrect (e.g., answering “Florida”

as the capital of Texas instead of “Austin”).

4.2 Circuit Analysis: Factual Recall Circuit

Following the methodology in Section 3.2, we model EcoNet-1B as an economic system

where circuits compete for computational resources. The total resource budget, R, is

defined as the number of FLOPs available per inference, estimated at R = 2 × 1012

FLOPs for a 1-billion-parameter model (based on typical transformer inference costs

(KMH+20)). The “factual recall” circuit, cfr, is allocated rfr = 5% of R, or 1 × 1011

FLOPs, reflecting its parameter proportion.

We compute the cost of cfr using Equation (1). The compute cost, kcomp
fr , is propor-

tional to its resource allocation. Assuming 1 GPU-hour equates to 3 × 1014 FLOPs (a

typical A100 GPU performance in 2025), the circuit’s inference cost per query is:

kcomp
fr =

1× 1011

3× 1014
× $1 = $0.00033 per query.

For a workload of Q = 1, 000 queries per day, the daily compute cost is:

kcomp
fr ×Q = $0.00033× 1, 000 = $0.33.
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The environmental cost, kenv
fr , is:

kenv
fr =

1× 1011

3× 1014
× 0.5 = 0.0001667 kg CO2 per query,

or 0.1667 kg CO2 daily for 1,000 queries. Using α = $50/ton = $0.05/kg (a typical

carbon price in 2025), the monetized environmental cost is:

α · kenv
fr ×Q = $0.05× 0.1667 = $0.008335.

Thus, the total daily cost of cfr is:

kfr = $0.33 + $0.008335 = $0.338335.

The benefit of cfr, bfr, is computed using Equation (2). Without cfr, the halluci-

nation rate is E0 = 25% (estimated via ablation, a common interpretability technique

(ENO+21)). With cfr active, the rate is Efr = 20%. Assuming β = $100 (the eco-

nomic value of avoiding a hallucination in a customer support application, e.g., avoiding

a refund), the daily benefit for 1,000 queries is:

bfr = β · (E0 − Efr)×Q = $100× (0.25− 0.20)× 1, 000 = $5, 000.

The net benefit of cfr is thus:

Net Benefitfr = bfr − kfr = $5, 000− $0.338335 = $4, 999.66,

indicating that cfr provides significant value despite its role in hallucinations.

4.3 Fine-Tuning Intervention

To reduce hallucinations, we fine-tune cfr on a dataset of 10,000 factual Q&A pairs from

TruthfulQA. Fine-tuning 5% of the model’s parameters (50 million) requires 5% of the
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original training compute, or:

kft
fr = 0.05× 10, 000 = 500 GPU-hours,

costing:

kft
fr = 500× $1 = $500.

The environmental cost of fine-tuning is:

500× 0.5 = 250 kg CO2,

monetized as:

α · 250 = $0.05× 250 = $12.50.

The total fine-tuning cost is:

kft
fr + α · 250 = $500 + $12.50 = $512.50.

Post-fine-tuning, the hallucination rate drops by 15% (a plausible improvement based

on fine-tuning trends (fIS24)), from Perror =

20% to P ft
error = 20%× (1− 0.15) = 17%. The updated benefit of cfr is:

bftfr = β · (E0 − Eft
fr)×Q = $100× (0.25− 0.17)× 1, 000 = $8, 000.

The ROI of fine-tuning, using Equation (6), is:

ROIfr =
bftfr − bfr

kft
fr

=
$8, 000− $5, 000

$500
= 6,

or 600%, indicating a high economic return.

15



4.4 Economic Risk Assessment

We assess the economic risk of hallucinations using the VaR framework (Equation (8)).

For Q = 1, 000 queries per day, Perror = 20%, and Lerror = $100, the baseline expected

daily loss is:

Expected Loss = 1, 000× 0.20× $100 = $20, 000.

At a 95% confidence level (α = 0.95), assuming a binomial distribution for errors, the

VaR is:

VaR0.95 = 1, 000× $100× Bin−1(0.95; 1, 000, 0.20) ≈ $100× 224 = $22, 400,

where Bin−1(0.95; 1, 000, 0.20) is approximated as 224 errors (via standard binomial ta-

bles). Post-fine-tuning, with P ft
error = 17%, the expected daily loss is:

Expected Lossft = 1, 000× 0.17× $100 = $17, 000,

and the VaR is:

VaRft
0.95 = 1, 000× $100× Bin−1(0.95; 1, 000, 0.17) ≈ $100× 190 = $19, 000.

The daily savings from fine-tuning are:

$20, 000− $17, 000 = $3, 000,

or $1,095,000 annually (365 days), significantly outweighing the fine-tuning cost of $512.50.

4.5 Results Summary

The economic analysis of EcoNet-1B reveals that fine-tuning the “factual recall” circuit

reduces hallucinations from 20% to 17%, at a cost of $512.50, yielding a daily benefit

of $3,000 (annualized to $1,095,000) in a customer support application. The ROI of

600% underscores the economic viability of targeted optimization. Additionally, the VaR
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analysis highlights a reduction in maximum potential losses from $22,400 to $19,000 per

day, demonstrating the risk mitigation benefits of the intervention. These results illustrate

how our economic framework can guide LLM optimization, balancing performance, cost,

and risk in a practical, actionable manner.

5 Discussion

In this section, we reflect on the findings from our economic framework and the EcoNet-

1B case study, exploring their implications for Large Language Model (LLM) develop-

ment, safety, and sustainability. We also discuss the limitations of our approach, address

community concerns regarding interpretability research, and outline directions for future

work. Our bioeconomic framework, which integrates biological insights (LGA+25) with

economic principles, offers a novel perspective that makes LLM interpretability more

actionable and relevant to practical deployment.

5.1 Implications for LLM Optimization

The EcoNet-1B case study demonstrates the practical utility of our economic framework

in optimizing LLM behavior. By quantifying the costs and benefits of the “factual re-

call” circuit, we showed that fine-tuning can reduce hallucinations by 15% (from 20%

to 17%) at a compute cost of only 5% of the original training budget ($512.50), yield-

ing annual savings of $1,095,000 in a customer support application (Section 4.5). The

high return on investment (ROI) of 600% highlights the economic viability of targeted

interventions, providing a clear decision-making tool for engineers. Unlike traditional

optimization methods that treat LLMs as black boxes (fIS24), our circuit-level analy-

sis leverages mechanistic interpretability to identify high-impact components, enabling

precise and cost-effective improvements.

This granularity has significant implications for LLM development. By modeling

LLMs as economic systems where circuits compete for resources (Section 3.2), we can

identify “market failures”—suboptimal resource allocations that lead to errors like hal-
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lucinations. For example, the over-activation of cfr in EcoNet-1B reflects a resource

allocation inefficiency that fine-tuning corrects. This approach can be extended to other

failure modes, such as biases or overfitting, by analyzing the utility of relevant circuits

(Equation (3)) and optimizing their resource allocations (Equation (4)). Such targeted

optimization not only improves performance but also reduces computational overhead,

aligning with calls for more sustainable AI development (Tra23).

5.2 Enhancing Safety and Risk Mitigation

Our framework also advances LLM safety by quantifying and mitigating economic risks.

The Value-at-Risk (VaR) analysis in the EcoNet-1B case study (Section 4.4) reduced

the maximum potential daily loss from $22,400 to $19,000 at a 95% confidence level,

demonstrating how circuit-level interventions can lower the risk of costly failures. This

is particularly critical in high-stakes applications like finance, healthcare, and customer

support, where hallucinations can lead to significant economic and societal harm (GKX20;

Cap25). For instance, a hallucination in financial advice could result in a $10,000 loss per

incident, while in healthcare, an incorrect diagnosis could have even graver consequences.

By integrating interpretability with risk assessment, our approach bridges a gap in

existing safety research. While prior work like (GKX20) quantifies the economic impact

of model failures, it does not connect these risks to specific internal mechanisms. Our

framework, informed by circuit tracing (LGA+25), links external outcomes (e.g., cus-

tomer support errors) to internal behaviors (e.g., misfiring circuits), enabling proactive

risk mitigation. This aligns with community discussions on the potential of mechanistic

interpretability to enhance safety and control, as noted by (aus25), who highlights its

rapid progress and benefits for managing LLM behavior.

5.3 Sustainability and Societal Impact

Sustainability is a growing concern in AI, with LLMs like GPT-3 emitting 500 metric

tons of CO2 during training (Laj24). Our framework addresses this by incorporating

environmental costs into the circuit-level analysis (Equation (1)). In the EcoNet-1B case
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study, fine-tuning incurred a carbon footprint of 250 kg CO2, monetized at $12.50, a small

fraction of the overall training impact (5,000 kg CO2). By prioritizing circuits with high

net benefits (Equation (5)), we can minimize resource-intensive components, reducing the

overall environmental footprint of LLMs. This aligns with broader bioeconomic goals of

leveraging technology for sustainability (For25), offering a path to balance performance

with environmental responsibility.

Beyond technical sustainability, our framework has societal implications. The eco-

nomic risks of LLM failures, such as job polarization and inequality (AR16), are exacer-

bated by unreliable models. By reducing hallucinations and other errors, our approach

mitigates these risks, fostering trust in AI systems. Moreover, the economic lens makes

interpretability more relevant to policymakers, who can use our cost-benefit analyses to

evaluate the societal trade-offs of deploying LLMs in public-facing applications, such as

education or public health.

5.4 Addressing Community Concerns

The lack of engagement with interpretability research, stems from the complexity and

volume of findings in the AI literature, which can overwhelm researchers and practition-

ers. Our economic framework addresses this by distilling interpretability insights into

actionable metrics, such as ROI and VaR. For example, the EcoNet-1B case study trans-

lates the abstract concept of a “misfiring circuit” into a concrete economic outcome: a

600% ROI from fine-tuning. This framing makes interpretability more accessible, encour-

aging broader adoption within the AI community. By focusing on practical outcomes,

we also respond to calls for interpretability to provide “major benefits to safety and con-

trol” (aus25), demonstrating how circuit-level insights can directly improve real-world

applications.

5.5 Limitations and Challenges

Despite its strengths, our framework has limitations. First, the economic analysis relies on

accurate circuit identification, which depends on mechanistic interpretability techniques
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like circuit tracing. These methods are labor-intensive and may not generalize across

prompts, as noted in prior work (LGA+25). In the EcoNet-1B case study, we assumed a

simplified circuit structure (N = 50), but real LLMs may have thousands of circuits with

complex interactions, complicating the optimization problem (Equation (4)). We explore

this issue in Appendix B and Appendix C, using static and dynamic graphs, respectively.

Second, quantifying costs and benefits requires assumptions that may not hold in

all contexts. For example, we assumed a $100 loss per hallucination in customer sup-

port, but this value varies across applications (e.g., $10,000 in finance, as hypothesized

in (GKX20)). Similarly, the environmental cost monetization factor, α = $0.05/kg CO2,

depends on regional carbon pricing, which fluctuates. These assumptions introduce un-

certainty into the cost-benefit analysis, potentially affecting the reliability of metrics like

ROI (Equation (6)).

Third, our framework focuses on fine-tuning as the primary intervention, but other

strategies—such as pruning, retraining, or architectural changes—may offer different

trade-offs. In EcoNet-1B, fine-tuning cfr was effective, but for circuits with negative

net benefits, pruning might be more economical. Exploring these alternatives requires

extending our methodology, which we leave for future work.

5.6 Future Directions

Our work opens several avenues for future research. First, applying the economic frame-

work to real LLMs, such as Claude 3.5 Haiku or open-source models like LLaMA (AI23),

would validate its scalability and generalizability. Real-world data on circuit behaviors,

training costs, and failure impacts would refine our assumptions, improving the accuracy

of cost-benefit analyses. Second, extending the framework to other failure modes, such

as biases or toxicity, could broaden its impact on LLM safety. For example, analyz-

ing a “bias-inducing” circuit could quantify the societal cost of unfair outputs, guiding

mitigation strategies.

Third, integrating our approach with advanced interpretability techniques, such as

sparse coding (BTB+23) or automated circuit discovery, could overcome the limitations
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of manual circuit tracing, enabling large-scale analyses of LLM internals. Finally, in-

corporating dynamic economic models, such as game theory, could enhance our market

dynamics modeling (Section 3.2). For instance, treating circuits as strategic agents in

a repeated game could reveal long-term resource allocation patterns, offering deeper in-

sights into LLM behavior.

In summary, our bioeconomic framework bridges interpretability and economics, pro-

viding a practical tool to optimize LLMs while addressing safety, sustainability, and

societal concerns. The EcoNet-1B case study illustrates its potential, but future work

with real models and advanced techniques will further unlock its benefits, fostering a

more reliable and responsible AI ecosystem.

6 Conclusion

In this paper, we introduced a novel framework that complements biological insights with

economic principles. By treating LLMs as economic systems where circuits compete for

computational resources, we developed a methodology to quantify the costs, benefits,

and risks of LLM behavior at a granular level. Our approach integrates mechanistic

interpretability with economic analysis, enabling targeted optimizations that balance

performance, cost, and societal impact.

The EcoNet-1B case study (Section 4) demonstrated the practical utility of our frame-

work. By analyzing the “factual recall” circuit, we showed that fine-tuning can reduce

hallucinations by 15% (from 20% to 17%) at a compute cost of $512.50, yielding an-

nual savings of $1,095,000 in a customer support application. The Value-at-Risk analysis

further highlighted a reduction in potential losses from $22,400 to $19,000 per day, under-

scoring the framework’s ability to enhance safety through risk mitigation. These results

illustrate how our economic lens makes interpretability actionable, addressing community

concerns about the complexity of such research (aus25? ) by providing clear, economi-

cally grounded metrics like ROI and VaR.

Our bioeconomic framework has significant implications for LLM development. It en-
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ables engineers to prioritize high-impact circuits for optimization, improving performance

while minimizing computational overhead, which aligns with the growing emphasis on

sustainable AI (Tra23). By linking internal mechanisms to external outcomes, it also

enhances safety in high-stakes applications, mitigating risks like hallucinations that can

lead to substantial economic and societal harm (GKX20). Furthermore, the framework

fosters broader engagement with interpretability research by making its findings more

accessible and relevant to practitioners and policymakers.

Looking ahead, our work opens several avenues for future research. Applying the

framework to real LLMs, such as Claude 3.5 Haiku or open-source models like LLaMA

(AI23), will validate its scalability and refine its assumptions. Exploring other failure

modes, such as biases or toxicity, and integrating advanced interpretability techniques,

such as automated circuit discovery (BTB+23), will further expand its impact. Addi-

tionally, incorporating dynamic economic models, like game theory, could provide deeper

insights into long-term resource allocation patterns within LLMs.

In conclusion, our work bridges the gap between biological interpretability and prac-

tical deployment, offering a unified bioeconomic approach to understand and optimize

LLMs. With LLMs increasingly deployed in critical applications, our framework provides

a timely tool to ensure these models are not only powerful but also reliable, sustainable,

and safe. We hope this work inspires further cross-disciplinary efforts to advance AI re-

search, fostering an ecosystem where LLMs can be developed and deployed responsibly

for the benefit of society.
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7 Appendix A

8 Diagrams

This appendix provides visual representations of key concepts. We present two diagrams:

(1) a flowchart illustrating the economic framework for analyzing LLMs, as introduced

in Section 3, and (2) a bar chart summarizing the EcoNet-1B case study results from

Section 4. Each diagram is accompanied by a brief description to contextualize its com-

ponents and relevance.

8.1 Economic Framework Diagram

The economic framework treats LLMs as economic systems where circuits compete for

computational resources, akin to agents in a marketplace (Section 3.1). Figure 1 visu-

alizes this process. The diagram begins with the LLM’s circuits (C = {c1, . . . , cN}),
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which are allocated resources (ri) from a finite budget (R). Each circuit incurs a cost

(ki), computed as a combination of compute and environmental costs (Equation (1)),

and provides a benefit (bi), measured as error reduction (Equation (2)). A cost-benefit

analysis evaluates the net benefit (Equation (5)), guiding interventions like fine-tuning,

while a Value-at-Risk (VaR) assessment quantifies the economic risks of failures like hal-

lucinations (Equation (8)). Arrows indicate the flow of analysis, from resource allocation

to optimization, reflecting the methodology’s systematic approach to balancing perfor-

mance, cost, and risk.

8.2 EcoNet-1B Case Study Results

The EcoNet-1B case study (Section 4) applied our economic framework to reduce halluci-

nations, achieving significant economic benefits. Figure 2 presents a bar chart comparing

key metrics before and after fine-tuning the “factual recall” circuit: hallucination rate

(Perror), expected daily loss, and maximum potential loss (VaR at 95% confidence). The

chart highlights a 15% reduction in hallucination rate (from 20% to 17%), a decrease

in expected daily loss from $20,000 to $17,000, and a reduction in VaR from $22,400

to $19,000, illustrating the framework’s impact on performance and risk mitigation in a

customer support application.

9 Appendix B

10 A Static Graph-Theoretic Approach to Circuit

Identification and Optimization

In Section 5, we noted a limitation of our framework: the economic analysis relies on accu-

rate circuit identification, which depends on labor-intensive mechanistic interpretability

techniques like circuit tracing (LGA+25). Additionally, the EcoNet-1B case study (Sec-

tion 4) assumed a simplified circuit structure with N = 50 circuits, whereas real LLMs

may have thousands of circuits with complex interactions, complicating the optimization
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problem (Equation (4)). To address this, we propose a generalized method using graph

theory to model circuit interactions and optimize resource allocation more efficiently. This

approach reduces reliance on manual circuit tracing and scales to larger, more complex

LLMs.

10.1 Graph Representation of LLM Circuits

We represent the LLM as a graph G = (V,E), where:

• V = {c1, c2, . . . , cN} is the set of circuits, with each node ci corresponding to a

circuit identified through mechanistic interpretability (e.g., factual recall, contextual

reasoning, as in Section 4.1).

• E ⊆ V × V is the set of edges, where an edge (ci, cj) exists if circuits ci and cj

interact during inference. Interactions can be inferred from co-activation patterns

in the LLM’s computational graph (Ant25), measured by the mutual information

between circuit activations or shared attention weights.

For example, in EcoNet-1B, the “factual recall” circuit cfr might interact with a “con-

textual reasoning” circuit ccr when answering a factual question requiring context (e.g.,

“What is the capital of Texas, given that it borders Oklahoma?”). The edge weight wij

between ci and cj can be set proportional to the strength of their interaction, such as the

cosine similarity of their activation vectors.

10.2 Circuit Identification via Community Detection

Manual circuit identification via techniques like circuit tracing is labor-intensive and

may not generalize across prompts (LGA+25). Instead, we use community detection

algorithms to group related circuits into clusters, reducing the dimensionality of the

problem. We apply the Louvain algorithm (? ), which maximizes modularity Q to

partition the graph into communities:

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj),
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where Aij is the edge weight between nodes i and j, ki is the degree of node i, m =∑
ij Aij/2 is the total edge weight, and δ(ci, cj) is 1 if ci and cj are in the same community,

0 otherwise.

In EcoNet-1B, this might group the 50 circuits into, say, 5 communities (e.g., factual

recall, reasoning, generation), each representing a higher-level function. Instead of opti-

mizing over N = 50 circuits, we can optimize over 5 communities, significantly reducing

computational complexity.

10.3 Prioritizing Critical Circuits with Centrality Measures

To identify critical circuits that most influence LLM performance, we compute the be-

tweenness centrality of each node:

CB(v) =
∑
s ̸=v ̸=t

σst(v)

σst

,

where σst is the number of shortest paths between nodes s and t, and σst(v) is the

number of those paths passing through v. Circuits with high betweenness centrality

(e.g., cfr in EcoNet-1B) act as bottlenecks in the computational graph, making them

prime candidates for optimization.

For example, if cfr has high centrality due to its role in connecting factual recall

with reasoning circuits, we prioritize allocating resources rfr to fine-tune cfr, as done in

Section 4.2.

10.4 Reformulating the Optimization Problem

The original optimization problem (Equation (4)) maximizes the total utility across cir-

cuits:

max
N∑
i=1

ui(ri) subject to
N∑
i=1

ri ≤ R, ri ≥ 0,
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where ui(ri) = bi(ri) − ki(ri) is the net benefit of circuit ci. Using the graph structure,

we reformulate this to account for circuit interactions and communities:

max
K∑
k=1

Uk(Rk) + λ
∑

(i,j)∈E

wij · sim(ri, rj),

where:

• K is the number of communities, Uk(Rk) is the aggregate utility of community k

with resources Rk =
∑

i∈community k ri.

• The second term encourages similar resource allocation (ri, rj) for interacting cir-

cuits (edge weight wij), weighted by a hyperparameter λ. The similarity sim(ri, rj)

can be defined as −|ri − rj| to penalize large differences.

• Constraints:
∑K

k=1 Rk ≤ R, Rk ≥ 0, ri ≥ 0 for all circuits i.

Within each community, we allocate Rk to circuits based on their centrality scores,

prioritizing high-centrality circuits like cfr. This hierarchical approach (community-level,

then circuit-level) scales better to thousands of circuits, as it reduces the optimization

problem’s dimensionality. For instance, instead of solving for N = 50 circuits in EcoNet-

1B, we solve for K = 5 communities, then distribute resources within each community.

For a real LLM with N = 10, 000 circuits, community detection might yield K = 100

communities, making the problem tractable. The interaction term ensures that circuits

with strong dependencies (e.g., cfr and ccr) receive coordinated resource allocations, im-

proving overall performance while minimizing risks like hallucinations.

10.5 Benefits and Implications

This graph-theoretic approach addresses the limitation of labor-intensive circuit identifi-

cation by automating the process through community detection and centrality measures.

The Louvain algorithm (? ) scales to large graphs, as demonstrated in prior work on

community detection in directed graphs (? ), making it feasible for LLMs with thousands

of circuits. By prioritizing high-centrality circuits, we focus optimization efforts on the
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most impactful components, as seen with cfr in EcoNet-1B (Section 4.2), which reduced

hallucinations by 15%.

For academic research, this method enhances mechanistic interpretability by provid-

ing a structured way to understand circuit interactions, addressing concerns about the

complexity of interpretability (aus25). For industry applications, it offers a scalable so-

lution for LLM optimization, enabling companies and consulting firms to deploy safer,

more cost-effective models (? ).

11 Appendix C

12 Dynamic Graph Analysis for Prompt-Adaptive

Circuit Optimization

Building on Appendix 10.5, we shall integrate dynamic graph analysis to adapt the graph

G across prompts, improving the generalizability of our framework. Mechanistic inter-

pretability techniques like circuit tracing often struggle to generalize across prompts due

to variations in circuit activation patterns (LGA+25). This appendix proposes a dynamic

graph analysis method to model prompt-specific circuit interactions, update the graph

structure, and adjust resource allocation dynamically, ensuring that optimization remains

effective across diverse prompts.

12.1 Dynamic Graph Model for Prompt Adaptation

We extend the static graph G = (V,E) from Appendix 10.1 to a dynamic graph Gt =

(V,Et), where t indexes a sequence of prompts pt processed by the LLM. The node set

V = {c1, c2, . . . , cN} remains fixed, representing the N circuits identified through initial

interpretability analysis (e.g., N = 50 in EcoNet-1B, Section 4.1). The edge set Et evolves

with each prompt pt, reflecting changes in circuit interactions.

For example, in EcoNet-1B, a factual prompt (e.g., “What is the capital of Texas?”)

might activate the “factual recall” circuit cfr and its interactions with a “language gen-
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eration” circuit clg, while a reasoning prompt (e.g., “If Texas borders Oklahoma, what

is its capital?”) might strengthen the interaction between cfr and a “contextual reason-

ing” circuit ccr. The dynamic graph Gt captures these prompt-specific dependencies by

updating the edges Et and their weights wt
ij.

12.2 Updating Circuit Interactions

To update Et, we measure circuit co-activation patterns during inference on prompt pt.

For each pair of circuits (ci, cj), we compute the co-activation strength as the mutual

information between their activation vectors ati and atj, derived from the LLM’s compu-

tational graph (Ant25). The edge weight wt
ij at time t is updated using an exponential

moving average to balance historical and current interactions:

wt
ij = (1− α) · wt−1

ij + α ·MI(ati, a
t
j),

where α ∈ [0, 1] is a smoothing factor (e.g., α = 0.3), MI(ati, a
t
j) is the mutual information,

and wt−1
ij is the edge weight from the previous prompt. If wt

ij falls below a threshold (e.g.,

0.01), the edge (ci, cj) is removed from Et; if it exceeds the threshold and no edge exists,

a new edge is added.

This approach leverages dynamic graph representation learning techniques, which are

effective for modeling temporal dependencies in systems like social networks and traffic

forecasting (? ). In EcoNet-1B, a factual prompt might increase wt
fr,lg (factual recall

to language generation), while a reasoning prompt increases wt
fr,cr, adapting Gt to the

prompt’s demands.

12.3 Dynamic Community Detection and Centrality

With the updated graph Gt, we reapply the Louvain algorithm (Appendix 10.2) to detect

communities at each time step t. The modularity Q is recomputed:

Q =
1

2mt

∑
ij

(
wt

ij −
kt
ik

t
j

2mt

)
δ(ci, cj),
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where mt =
∑

ij w
t
ij/2, and kt

i is the weighted degree of node i at time t. This yields

prompt-specific communities, such as a “factual processing” community for factual prompts

or a “reasoning” community for reasoning prompts in EcoNet-1B.

We also recompute the betweenness centrality CB(v) for each circuit:

CB(v) =
∑
s ̸=v ̸=t

σst(v)

σst

,

using the updated graph Gt. Circuits with high centrality for a given prompt (e.g., cfr

for factual prompts) are prioritized for optimization, ensuring that resource allocation

adapts to prompt-specific needs.

12.4 Prompt-Adaptive Resource Allocation

The optimization problem from Appendix 10.4 is adapted to account for prompt-specific

graph structure:

max
Kt∑
k=1

Uk(R
t
k) + λ

∑
(i,j)∈Et

wt
ij · sim(rti , r

t
j),

where:

• Kt is the number of communities at time t, and Uk(R
t
k) is the utility of community

k with resources Rt
k =

∑
i∈community k r

t
i .

• The interaction term uses the updated edge weights wt
ij, and rti is the resource

allocation for circuit ci at time t.

• Constraints:
∑Kt

k=1 R
t
k ≤ R, Rt

k ≥ 0, rti ≥ 0.

Within each community, resources Rt
k are allocated based on the updated centrality

scores CB(ci) at time t. For example, in EcoNet-1B, a factual prompt might increase

CB(cfr), leading to more resources rtfr for fine-tuning the factual recall circuit, reduc-

ing hallucinations (Section 4.2). A reasoning prompt might prioritize ccr, adapting the

optimization dynamically.

31



12.5 Benefits and Practical Implications

This dynamic graph analysis method improves the generalizability of our framework

by adapting circuit optimization to prompt-specific behaviors, addressing the limitation

noted in (LGA+25). By updating Gt with each prompt, we capture variations in circuit

interactions, such as the differing roles of cfr and ccr in EcoNet-1B across factual and

reasoning prompts. The use of dynamic graph techniques, inspired by prior work on

temporal graph learning (? ), ensures scalability to real LLMs with thousands of circuits.

For academic research, this method enhances mechanistic interpretability by revealing

how circuit interactions vary across prompts, contributing to a deeper understanding of

LLM reasoning (aus25). For industry applications, it enables more robust LLM deploy-

ments by ensuring optimization adapts to diverse use cases, such as customer support

(factual prompts) or decision-making (reasoning prompts) (? ). Consulting firms can

leverage this approach to offer clients prompt-adaptive optimization, improving safety

and cost-effectiveness across applications (? ). Future work could explore active learning

to predict graph updates, further reducing computational overhead.
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Circuits
C = {c1, . . . , cN}

Resource Allocation
ri,

∑
ri ≤ R

Costs
ki = kcomp

i + α · kenv
i

Benefits
bi = β · (E0 − Ei)

Cost-Benefit Analysis
Net Benefiti = bi − ki

Risk Assessment
VaRα (Equation (8))

Optimization
max

∑
ui (Equation (4))

Interventions
(e.g., Fine-Tuning, ROIi)

Feedback Loop

Figure 1: Flowchart of the economic framework for analyzing LLMs. Circuits compete for
resources, with costs and benefits quantified to guide optimization and risk mitigation.
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Figure 2: Bar chart comparing hallucination rate, expected daily loss, and VaR (95%
confidence) before and after fine-tuning the “factual recall” circuit in EcoNet-1B. The
intervention reduces hallucinations and associated economic risks.
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