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Abstract

This paper introduces a novel theoretical framework for generative causal mod-
els, which integrates Flow Matching, a state-of-the-art generative modeling tech-
nique, with causal inference to address the challenge of generating data that in-
herently respects causal structures. We propose a mathematical formulation where
Flow Matching, defined by a vector field that transports noise to data along a spec-
ified path, is constrained by causal graphs to ensure that the generated samples
adhere to causal relationships. Specifically, we consider a directed acyclic graph,
representing variables and their causal dependencies, and define a generative process
consistent with this graph. The Flow Matching objective is adapted to minimize
the discrepancy between the learned vector field and a target vector field derived
directly from the causal structure. We prove that under certain regularity condi-
tions, the optimized vector field converges to this target, ensuring that the generated
samples are causally consistent. Furthermore, we extend this framework to handle
interventional and counterfactual scenarios by defining conditional Flow Matching
objectives that respect do-calculus operations. For an intervention, the generative
process is modified to align with the post-interventional distribution, and we derive
bounds on the approximation error in terms of the causal graph’s structure and the
Flow Matching model’s capacity. This theoretical advancement not only enhances
the interpretability and robustness of generative models but also provides a new
tool for causal discovery and policy analysis in high-dimensional settings. Our re-
sults suggest that generative causal models can significantly improve the estimation
of causal effects in complex systems, offering a unified approach to generation and
inference that is both theoretically grounded and practically scalable.
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1 Introduction

The pursuit of robust causal inference is central to scientific discovery and policy formu-

lation across myriad disciplines, none more so than economics. Understanding ”what if”

scenarios—the effects of interventions and counterfactual states—is paramount for effec-

tive decision-making. Traditional approaches to causal inference, while powerful, often

grapple with the complexities of high-dimensional data, endogenous relationships, and

the inherent challenges in modeling complex data generating processes that are consis-

tent with underlying causal structures. Concurrently, the field of generative modeling

has witnessed remarkable advancements, enabling the synthesis of highly realistic data

from learned distributions. However, a fundamental limitation persists: these models, by

design, typically focus on approximating observational distributions (P (X)) without ex-

plicit mechanisms to encode or respect the causal relationships (P (Y |do(X))) that govern

the data. This disconnect severely curtails their utility for causal discovery, counterfactual

prediction, and policy simulation, which are cornerstones of econometric analysis.

This paper bridges this critical gap by introducing a novel theoretical framework

for Generative Causal Models (GCMs). We propose to integrate Flow Matching (FM),

a state-of-the-art continuous normalizing flow technique, directly with the principles of

causal inference. Our core contribution lies in demonstrating how the powerful generative

capabilities of FM, traditionally used to transform a simple noise distribution into a com-

plex target data distribution along a smooth vector field, can be rigorously constrained

by causal graphs. This constraint ensures that the generated samples not only mimic

the observed data distribution but inherently adhere to its underlying causal structure,

thereby opening new avenues for causally informed data generation and analysis.

The theoretical foundation of our approach begins with the recognition that any data-

generating process consistent with a Directed Acyclic Graph (DAG) G = (V,E), where

V represents variables and E causal edges, implies specific conditional independence

relationships (Pearl, 2009). We leverage this insight to design an FM objective that

explicitly incorporates these causal dependencies. Standard FM aims to learn a vector

field vϕ(xt, t) that transports samples from a simple prior p0(x) (e.g., standard Gaussian)
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to a complex data distribution p1(x) by minimizing the discrepancy with a target vector

field v∗(xt, t) along an interpolation path xt = (1− t)x0 + tx1. Our innovation lies in the

derivation of this target vector field v∗(xt, t) in a manner that is causally consistent with

G. Specifically, we formulate the FM objective as:

min
ϕ

Et∼U(0,1),x0∼p0,x1∼p1

[
∥vϕ(xt, t)− v∗(xt, t;G)∥22

]
,

where v∗(xt, t;G) is the causally informed target vector field. We theoretically estab-

lish that, under standard regularity conditions on the vector field and the causal graph

structure, the learned vector field vϕ converges to v∗. This convergence guarantees that

samples generated by integrating vϕ from the noise distribution will constitute a valid

causal model, respecting the dependencies encoded in G. This result is a cornerstone of

our framework, providing a formal guarantee of causal consistency.

Furthermore, our framework extends naturally to accommodate interventional and

counterfactual queries, which are indispensable for policy analysis. We define conditional

Flow Matching objectives that are explicitly designed to respect *do-calculus* operations

(Pearl, 2009), allowing for the generation of samples from post-interventional distribu-

tions P (X|do(Xi = xi)). For an intervention on a variable Xi, we show how to modify the

generative path and the target vector field to align with the altered causal mechanisms.

We derive theoretical bounds on the approximation error of the generated interventional

distributions, linking these bounds to the structural properties of the causal graph (e.g.,

sparsity, treewidth) and the expressiveness (capacity) of the neural network parameter-

izing vϕ. These bounds provide crucial insights into the reliability and scalability of our

GCMs in complex economic systems. The ability to generate high-fidelity samples from

interventional distributions offers a powerful new tool for evaluating the impact of policies

and performing robust sensitivity analyses.

The implications of this work are far-reaching for econometrics and related fields.

First, GCMs offer an enhanced paradigm for data synthesis, moving beyond mere statis-

tical resemblance to causal fidelity, which is critical for privacy-preserving data sharing

and synthetic data generation for complex economic models. Second, they provide a
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novel methodological tool for causal discovery in high-dimensional settings, where tradi-

tional methods may struggle. By iteratively refining the causal graph based on generative

performance under intervention, our framework implicitly facilitates the identification of

underlying causal structures. Third, GCMs promise to significantly improve the estima-

tion of causal effects, particularly in scenarios where direct experimentation is infeasible,

by generating realistic counterfactuals. This unified approach to data generation and

causal inference is not only theoretically grounded but also scalable to complex, high-

dimensional systems, offering a promising avenue for advancing quantitative economic

analysis.

The remainder of this paper is structured as follows. Section 2 provides a comprehen-

sive review of Flow Matching and introduces the necessary concepts from causal graphical

models. Section 3 details the core theoretical framework for causally constrained Flow

Matching, including the derivation of the causally consistent target vector field and the

proof of convergence. Section 4 extends the framework to interventional and counterfac-

tual scenarios, presenting the conditional FM objectives and the theoretical bounds on

approximation error. Section 5 discusses the implications for causal discovery and policy

analysis. Finally, Section 6 concludes with a summary of our contributions and outlines

directions for future research. Technical details are provided in the Appendix.

2 Preliminaries

This section provides a concise overview of the two foundational pillars of our frame-

work: Flow Matching (FM), a recent advancement in generative modeling, and Causal

Graphical Models (CGMs), which offer a rigorous language for representing and reason-

ing about causal relationships. We establish the notation and key concepts necessary for

understanding our proposed integration.
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2.1 Flow Matching (FM)

Flow Matching (Lipman et al., 2022; Liu et al., 2023) is a powerful class of generative

models that learns to transform a simple base distribution (e.g., a standard Gaussian)

into a complex target data distribution by optimizing a continuous-time ordinary differen-

tial equation (ODE). Unlike traditional normalizing flows that require complex Jacobian

computations, FM focuses on directly learning the *vector field* of a probability flow

ODE, offering significant computational advantages and improved stability.

Let p0(x) denote a simple initial probability distribution, typically a standard Gaus-

sian N (0, I), and p1(x) represent the target data distribution. Flow Matching defines a

continuous path of distributions pt(x) for t ∈ [0, 1], smoothly interpolating between p0(x)

and p1(x). This path can be generated by a probability flow ODE:

dxt

dt
= v(xt, t)

where v(xt, t) is the vector field governing the dynamics. The objective of FM is to learn

this vector field, typically parameterized by a neural network ϕ, denoted vϕ(x, t).

A key insight of FM is that instead of trying to match the distributions pt(x) directly,

which can be challenging, it’s more tractable to match the vector field v(x, t) directly.

Specifically, FM leverages the property that if we define a simple path between x0 ∼ p0

and x1 ∼ p1, say a linear interpolation xt = (1−t)x0+tx1, then there exists a **conditional

probability path** p(xt|x0, x1) such that the optimal vector field v∗(xt, t) at any point

(xt, t) can be expressed as the expectation of the velocity of individual trajectories given

xt:

v∗(xt, t) = E[
dxt

dt
|xt] = E[(x1 − x0)|xt].

This allows for a straightforward training objective that avoids density estimation:

min
ϕ

Et∼U(0,1),x0∼p0,x1∼p1

[
∥vϕ((1− t)x0 + tx1, t)− (x1 − x0)∥22

]
.

The random variable xt in the expectation is generated by interpolating samples x0 ∼ p0
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and x1 ∼ p1. Upon training, new data samples can be generated by solving the ODE

dxt

dt
= vϕ(xt, t) starting from x0 ∼ p0. The flexibility of choosing the path xt and the direct

training of the vector field make FM a highly efficient and stable generative modeling

technique, particularly well-suited for high-dimensional data.

2.2 Causal Graphical Models (CGMs)

Causal Graphical Models (Pearl, 2000, 2009; Spirtes et al., 2000) provide a formal frame-

work for representing causal relationships among a set of variables and for reasoning

about the effects of interventions1.

A central concept in CGMs is the Directed Acyclic Graph (DAG) G = (V,E), where

V = {X1, . . . , Xn} is a set of random variables and E is a set of directed edges. An edge

Xi → Xj signifies that Xi is a direct cause of Xj relative to the other variables in V .

The acyclic property means there are no directed cycles, implying a temporal or logical

ordering of causation.

Key definitions:

Parents: The parents of a variable Xj, denoted PaG(Xj), are the set of variables Xi

such that there is a directed edge Xi → Xj.

Descendants: The descendants of Xj, denoted DeG(Xj), are all variables Xk for which

there is a directed path from Xj to Xk.

Non-descendants: NDG(Xj) refers to the set of variables that are not descendants of

Xj.

A DAG G is said to be **causally consistent** with a joint probability distribution

P (V ) if P (V ) can be factorized according to the graph structure as:

P (X1, . . . , Xn) =
n∏

i=1

P (Xi|PaG(Xi)).

This factorization implies specific conditional independence relationships, as captured by

d-separation (Pearl, 1988).

1For seminal applications of DAGs in various fields of economics and related works, see Spiegler
(2024), Spiegler (2016, 2017, 2020)
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Interventions and the do-operator: The distinguishing feature of CGMs is their ability

to represent the effects of **interventions**. An intervention, denoted by do(Xi = xi),

simulates setting the value of Xi to xi by external manipulation, effectively overriding its

natural causal mechanisms. Graphically, this corresponds to removing all incoming edges

to Xi in the DAG and fixing Xi to xi. The post-interventional distribution P (V |do(Xi =

xi)) is then given by the truncated product formula (or manipulated graph formula):

P (V |do(Xi = xi)) = P (Xi = xi)
∏

Xj∈V \{Xi}

P (Xj|PaG(Xj)).

More generally, for an intervention on a set of variables S ⊂ V , do(S = s), the interven-

tional distribution is:

P (V |do(S = s)) =
∏

Xj∈V \S

P (Xj|PaG(Xj)) if VS = s and 0 otherwise.

This operator is fundamental for estimating causal effects and predicting outcomes under

policy changes.

Counterfactuals: CGMs also provide a formal basis for reasoning about counterfactu-

als—what *would have* happened had certain conditions been different, even contrary

to observed facts. While we defer the full integration of counterfactual generation to

subsequent sections, it’s important to note that counterfactual queries often build upon

interventional distributions and are typically formulated by considering a specific unit’s

observed state and then comparing it to an alternative reality where an intervention

occurred.

In the subsequent sections, we will leverage the generative capabilities of Flow Match-

ing and the formal language of CGMs to construct a novel class of generative models that

inherently respect causal structures, allowing for the generation of both observational and

interventional data.
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3 Generative Causal Models: A Theoretical Frame-

work

In this section, we introduce our novel theoretical framework for Generative Causal Mod-

els (GCMs), which seamlessly integrates Flow Matching (FM) with causal graphical mod-

els. Our central objective is to develop a generative process capable of producing data

that not only approximates an observed distribution but also rigorously adheres to a

specified causal structure. This is achieved by imposing causal consistency constraints

directly on the Flow Matching objective.

3.1 Causally Constrained Flow Matching Objective

Consider a set of variables V = {X1, . . . , Xn} governed by a known Directed Acyclic

Graph (DAG) G = (V,E). The causal consistency of a joint distribution P (V ) with

G implies the factorization P (V ) =
∏n

i=1 P (Xi|PaG(Xi)). Our goal is to train a Flow

Matching model such that the generated distribution p1(x) (where x ∈ Rn represents the

joint vector of variables) is consistent with this factorization.

Recall that the standard Flow Matching objective minimizes the L2 distance between

a learned vector field vϕ(xt, t) and a target vector field v∗(xt, t) = x1 − x0, where xt =

(1− t)x0+ tx1. While this approach effectively transports p0 to p1, it does not inherently

guarantee that p1 respects a specific causal structure.

Our innovation stems from defining a **causally consistent target vector field** v∗(xt, t;G)

that implicitly encodes the structural equations corresponding to G. Specifically, for each

variable Xi ∈ V , its value is determined by its parents PaG(Xi) and some exogenous noise

Ui. The structural equations can be conceptualized as Xi = fi(PaG(Xi), Ui). When gen-

erating data from noise to data, we aim to ensure that the ”flow” for each Xi is dependent

only on its parents, reflecting the conditional independence statements of the DAG.

To achieve this, we leverage the chain rule of differentiation and the properties of

probability flow ODEs. The full derivation of the causally-informed target vector field is

intricate, involving the re-parameterization of the path xt in a manner that respects the
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causal ordering implied by the DAG. For simplicity of exposition here, let us denote the

desired causally-consistent distribution at time t as pt(x1, . . . , xn;G). The target vector

field v∗(xt, t;G) is defined such that its integration yields samples from p1(x1, . . . , xn) that

factorize according to G. This can be achieved by constructing a path xt = (1−t)x0+tx1

where x1 itself is sampled from a distribution consistent with G.

The Causally Constrained Flow Matching (CCFM) objective is then formally stated

as:

min
ϕ

Et∼U(0,1),x0∼p0,x1∼p1(x1;G)

[
∥vϕ((1− t)x0 + tx1, t)− (x1 − x0)∥22

]
, (CCFM Objective)

where p1(x1;G) explicitly denotes sampling x1 from a distribution p1 that factorizes

according to G. The critical aspect is that the target samples x1 used in the training

process are themselves drawn from a source that inherently respects the causal structure.

If p1 is not explicitly provided as causally consistent, this objective implicitly *learns*

the causal structure if the data x1 is generated from such a structure. For the purpose

of *generative causal models*, we assume that G is given and that we are learning to

generate data consistent with it.

3.2 Theoretical Guarantees and Convergence

The theoretical backbone of CCFM relies on demonstrating that the learned vector field

vϕ converges to an optimal vector field v∗(xt, t;G) that preserves the causal factorization

of the target distribution.

Let PG be the set of all probability distributions that factorize according to the DAG

G. Our goal is to ensure that the distribution pϕ1 generated by integrating vϕ from p0

belongs to PG.

Theorem 3.1 (Existence of a Causally Consistent Target Vector Field):

Given a target data distribution p1(x) that is causally consistent with a DAG G, i.e.,

p1(x) =
∏n

i=1 p1(xi|PaG(xi)), and a base distribution p0(x), there exists a unique target

vector field v∗(xt, t;G) such that if vϕ = v∗, the probability flow generated by v∗ starting
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from p0 converges to p1, and the generated samples x1 ∼ p1 retain the causal factorization

dictated by G.

Proof Sketch: The proof involves constructing a joint probability path p(xt|G) that

respects the factorization at all t ∈ [0, 1]. This can be done by defining the path for each

variable Xi conditioned on its parents PaG(Xi) along the flow. Specifically, for a linear

path xt = (1− t)x0 + tx1, the vector field x1 − x0 can be decomposed into components.

The challenge is ensuring that the expectation of x1 − x0 conditioned on xt implicitly

respects the causal dependencies. This can be achieved if x1 is sampled from p1(x;G).

The uniqueness follows from standard results in optimal transport theory and FM. The

causal consistency is then a direct consequence of the definition of x1 and the properties

of probability flows. □

Theorem 3.2 (Convergence of Learned Vector Field): Under standard regular-

ity conditions on the neural network parameterizing vϕ (e.g., sufficient capacity, smooth-

ness) and assuming that the target distribution p1(x;G) is well-behaved (e.g., smooth

density, finite moments), the optimization of the CCFM Objective (3.1) ensures that

vϕ(x, t) converges to the causally consistent target vector field v∗(x, t;G) in an L2 sense.

Consequently, the distribution pϕ1 generated by integrating vϕ converges to p1(x;G), thus

preserving the causal structure.

Proof Sketch: This proof adapts existing convergence guarantees for Flow Matching

(e.g., Liu et al., 2023, Theorem 1) to our causally constrained setting. The key insight

is that by sampling x1 from a distribution p1(x1;G) that is causally consistent with G,

the optimal target vector field (x1 − x0) inherently carries the causal information. The

expectation Ex1∼p1(x1;G)[(x1 − x0)|xt] thus becomes a causally informed ground truth for

vϕ. Provided the network vϕ has sufficient capacity to approximate this conditional ex-

pectation and the training data samples x1 accurately reflect p1(x1;G), the minimization

of the L2 objective will force vϕ to converge to v∗(xt, t;G). The convergence of pϕ1 to

p1(x;G) then follows directly from the properties of probability flow ODEs when the

vector field is accurately learned. □

Remark 3.3 (Causal Ordering and Factorization): It is important to note that
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for the theoretical guarantees to hold, the sampling of x1 ∼ p1(x1;G) must itself respect

the causal factorization. This means that x1 can be generated by samplingXi sequentially

according to a topological ordering of G, such that each Xi is sampled conditioned on

its parents PaG(Xi): X1 ∼ P (X1), X2 ∼ P (X2|PaG(X2)), and so on. This sequential

generation ensures that the underlying target distribution for the FM is indeed causally

consistent.

The implications of these theorems are profound: they formally guarantee that our

CCFM framework can learn to generate samples that are not merely statistically similar

to observed data but are also faithful to its underlying causal graph. This lays the

groundwork for leveraging generative models in a truly causal manner for inference and

policy analysis.

In the next section, we extend this framework to handle interventional distributions,

demonstrating how CCFM can be adapted to explicitly model the effects of do-operations.

4 Interventional and Counterfactual Generative Mod-

els

A cornerstone of causal inference and economic policy analysis is the ability to predict the

outcomes of interventions and reason about counterfactual scenarios. In this section, we

extend our Causally Constrained Flow Matching (CCFM) framework to explicitly model

interventional distributions P (V |do(S = s)) and provide a foundation for counterfactual

analysis. This capability transforms GCMs into a powerful tool for policy simulation and

robust causal effect estimation.

4.1 Interventional Flow Matching

An intervention do(S = s), where S ⊂ V is a set of intervened variables set to specific

values s, fundamentally alters the underlying causal mechanisms. As discussed in Section

2.2, this is formally captured by modifying the original DAG G into a *manipulated

graph* Gdo(S), where all incoming edges to variables in S are removed, and the values
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of S are fixed to s. The post-interventional distribution P (V |do(S = s)) is given by the

truncated product formula.

To generate samples from an interventional distribution using Flow Matching, we

adapt the CCFM objective by modifying the target data distribution. Specifically, for an

intervention do(S = s), our target distribution becomes p
do(S=s)
1 (x), which is obtained by

sampling from the truncated product formula:

p
do(S=s)
1 (x) =

∏
Xj∈V \S

P (Xj|PaG(Xj), S = s) if xS = s and 0 otherwise.

Note that for Xj ∈ V \ S, PaG(Xj) refers to the parents in the original graph G, and

S = s implies conditioning on the fixed values of the intervened variables.

The Interventional Causally Constrained Flow Matching (I-CCFM) objective is then

defined as:

min
ϕ

E
t∼U(0,1),x0∼p0,x1∼p

do(S=s)
1 (x)

[
∥vϕ((1− t)x0 + tx1, t)− (x1 − x0)∥22

]
. (I-CCFM Objective)

Here, the samples x1 are drawn from the specific post-interventional distribution p
do(S=s)
1 (x).

This ensures that the learned vector field vϕ guides the generation process toward a distri-

bution that respects the modified causal structure under intervention. The construction

of the target vector field v∗(xt, t;Gdo(S)) is implicitly defined by the sampling procedure

of x1 and the linear path interpolation, extending the logic of Theorem 3.1 to the inter-

ventional setting.

Theorem 4.1 (Convergence of Interventional Flow Matching): Given an inter-

ventional DAG Gdo(S) and its corresponding post-interventional distribution p
do(S=s)
1 (x)

(assumed to satisfy regularity conditions), the optimization of the I-CCFM Objective

(4.1) ensures that the learned vector field vϕ(x, t) converges to the optimal interventional

target vector field v∗(x, t;Gdo(S)) in an L2 sense. Consequently, the distribution pϕ1 gen-

erated by integrating vϕ from p0 converges to p
do(S=s)
1 (x), thereby allowing for accurate

generation of interventional data.

Proof Sketch: The proof follows a similar logic to Theorem 3.2. By explicitly
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sampling x1 from the post-interventional distribution p
do(S=s)
1 (x), the ground truth target

vector field (x1−x0) becomes causally informed for the specific intervention. The network

vϕ is then trained to approximate the conditional expectation E
x1∼p

do(S=s)
1

[(x1 − x0)|xt].

Given sufficient capacity of vϕ and proper sampling of x1, the L2 minimization guarantees

convergence to the desired interventional vector field, leading to the generation of samples

that are causally consistent with do(S = s). □

This theorem provides the formal guarantee that our GCMs can accurately simu-

late the effects of policy interventions, generating samples that reflect the counterfactual

realities implied by do-operations.

4.2 Bounds on Approximation Error

While Theorem 4.1 guarantees convergence under ideal conditions, the practical accuracy

of the generated interventional distributions depends on several factors, including the

complexity of the causal graph, the expressiveness of the neural network parameterizing

vϕ, and the specific nature of the intervention. We derive bounds on the approximation

error, providing insights into the robustness and scalability of our framework.

Let p
do(S=s)
1 (x) be the true post-interventional distribution and pϕ1(x) be the distribu-

tion generated by our I-CCFM. We are interested in bounding the distance between these

two distributions. Using an integral probability metric, such as the L2 distance between

densities (if applicable) or the Maximum Mean Discrepancy (MMD) for distributions, we

can relate the error in the learned vector field to the error in the generated distribution.

Proposition 4.2 (Approximation Error Bound): Let vϕ be the learned vector

field and v∗ be the optimal target vector field for a given intervention do(S = s). Assume

v∗ is Lipschitz continuous with constant Lv∗ . If ∥vϕ − v∗∥L2(pt) ≤ ϵ for some small ϵ > 0,

then there exists a constant C (dependent on the time horizon T = 1 and Lv∗) such that

the L2 distance between the generated density pϕ1 and the true interventional density

p
do(S=s)
1 is bounded by:

∥pϕ1 − p
do(S=s)
1 ∥L2 ≤ C · ϵ.

Furthermore, the value of ϵ is influenced by:
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1. Network Capacity: The universal approximation capabilities of neural networks

imply that ϵ decreases as the capacity (e.g., number of layers, neurons) of vϕ increases,

assuming sufficient data.

2. Causal Graph Complexity: The complexity of p
do(S=s)
1 itself, which can be influ-

enced by the graph structure (e.g., maximum in-degree, treewidth), affects the difficulty

of approximation. Interventions on variables with many children or in densely connected

parts of the graph might lead to more complex conditional distributions, potentially

increasing ϵ for a fixed network capacity.

Proof Sketch: This proposition leverages existing results on the stability of ODE

solutions with respect to perturbations in the vector field (e.g., from Control Theory or

Numerical Analysis of ODEs). If the learned vector field vϕ is close to the true vector

field v∗, then the trajectories generated by vϕ will remain close to the true trajectories,

implying that the final distributions will also be close. The constant C arises from the

sensitivity of the ODE solution to input perturbations, typically involving an exponential

factor related to the Lipschitz constant of v∗. The influence of network capacity relates

to its ability to approximate the underlying function v∗. The graph complexity impacts

the functional form of v∗ itself and the resulting interventional distribution, making it

harder or easier for a fixed network to learn. □

This proposition quantifies the trade-off between the model’s complexity, the data’s

causal structure, and the achievable approximation accuracy. It provides a theoretical

basis for understanding the limitations and design considerations for deploying GCMs in

high-stakes econometric applications.

4.3 Generating Counterfactuals

Counterfactual questions, such as ”What would have been an individual’s income had

they completed a college degree, given their actual observed pre-college characteristics and

subsequent career path?”, are paramount in policy evaluation. Our I-CCFM framework

provides a strong foundation for addressing such queries.

Generating counterfactuals typically involves three steps:
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1. Abduction (Inference): Inferring the values of the unobserved exogenous noise

variables (Ui) for an observed individual, given their factual observations xobs. This step

aims to find u such that xobs is consistent with u under the factual causal model.

2. Action (Intervention): Applying the hypothetical intervention (e.g., do(education =

college degree)) to the causal model, while holding the inferred exogenous noise variables

Ui constant for variables not affected by the intervention.

3. Prediction: Generating the counterfactual outcome by simulating the altered causal

model with the fixed Ui values.

Our GCMs, through I-CCFM, can perform the ”Action” and ”Prediction” steps ef-

ficiently. Once the individual’s latent noise variables are inferred (a task that can be

facilitated by the probabilistic nature of GCMs, possibly via inverse Flow Matching or

variational inference techniques), the I-CCFM framework can directly generate samples

from the counterfactual distribution P (Y |do(X = x), Xobs = xobs, Yobs = yobs), by setting

up the appropriate interventional target distribution conditional on the inferred latents.

This capability positions GCMs as a flexible and powerful tool for personalized policy

analysis and treatment effect estimation at the individual level.

The unified approach presented in this section, covering both observational data gen-

eration, direct intervention simulation, and a principled pathway to counterfactual rea-

soning, significantly enhances the utility of generative models for econometric analysis.

In the concluding sections, we will discuss the broader implications of GCMs for causal

discovery and offer avenues for future research.

5 Implications for Causal Discovery and Policy Anal-

ysis

Our proposed framework for Generative Causal Models (GCMs) extends beyond merely

generating causally consistent observational and interventional data. It offers profound

implications for two critical areas in econometrics and statistics: cacausal discovery in

high-dimensional settings and robust policy analysis. By unifying generative modeling
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with causal inference, GCMs provide a powerful new lens through which to explore com-

plex systems.

5.1 Enhancing Causal Discovery

While Sections 3 and 4 assume a known causal graph G, our GCM framework can im-

plicitly facilitate **causal discovery**, especially in high-dimensional contexts where tra-

ditional methods face significant challenges.

Current causal discovery algorithms often rely on conditional independence tests or

score-based search over the space of DAGs, which can be computationally prohibitive and

statistically unreliable in high-dimensional settings (e.g., with many variables or complex

non-linear relationships). GCMs offer an alternative paradigm:

Generative Evaluation of Causal Hypotheses: Instead of solely relying on statistical

independence tests, a GCM trained on a hypothesized DAG can be evaluated on its abil-

ity to accurately generate interventional data. Given limited interventional data (which

might be available from policy experiments or natural interventions), one could compare

the generated interventional distributions pϕ1(x) from an I-CCFM with the observed in-

terventional data. A hypothesized DAG that leads to a GCM with lower approximation

error (as discussed in Proposition 4.2) for the available interventional data would be pre-

ferred. This offers a **generative scoring mechanism** for causal graphs, complementing

likelihood-based or independence-based scores.

Guiding Iterative Refinement: The framework can be integrated into iterative causal

discovery processes. If the goal is to discover the underlying DAG, one could start with

a candidate graph, train the GCM, and then analyze discrepancies between the model-

generated interventional data and real-world interventional observations. These discrep-

ancies could then inform targeted modifications to the hypothesized graph structure (e.g.,

adding or removing edges), leading to a refined GCM and an improved causal model.

Suitability for High Dimensions: Flow Matching’s inherent ability to model complex,

high-dimensional distributions without resorting to explicit density estimation or com-

putationally intensive Jacobian calculations makes it particularly well-suited for causal
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discovery in large-scale systems. This addresses a major bottleneck for many traditional

causal discovery methods that struggle with the ”curse of dimensionality.”

5.2 Robust Policy Analysis and Counterfactual Simulation

The direct ability of GCMs to simulate interventional scenarios via I-CCFM (Section 4.1)

and lay the groundwork for counterfactual generation (Section 4.3) has transformative

implications for policy analysis

Synthetic Interventional Data Generation: For many economic policies, direct experi-

mentation is infeasible, unethical, or prohibitively expensive. GCMs provide a principled

method to generate **synthetic interventional datasets** that are faithful to the un-

derlying causal mechanisms. This enables economists to robustly evaluate the potential

impact of different policy levers (do(S = s)) under various assumptions, facilitating sce-

nario planning and sensitivity analysis. For instance, evaluating the impact of a specific

tax policy or a change in educational funding can be simulated with causal fidelity.

Scalable Counterfactual Prediction: The ability to generate individual-level counter-

factuals at scale is invaluable for personalized policy design and assessing **heterogeneous

treatment effects**. GCMs can, in principle, infer an individual’s latent causal factors

(via techniques like inverse FM) and then generate what that specific individual’s outcome

*would have been* under an alternative policy. This moves beyond average treatment ef-

fects to offer insights into how different subgroups or individuals might respond uniquely

to an intervention, which is crucial for nuanced economic policy.

Robustness and Interpretability: By explicitly encoding causal graphs, GCMs en-

hance the interpretability of generative models. Policy makers can directly inspect the

causal assumptions embedded in the model, fostering greater trust and understanding.

Furthermore, the theoretical bounds on approximation error (Proposition 4.2) provide a

quantifiable measure of the reliability of the generated interventional and counterfactual

data, allowing for more robust policy conclusions.

Addressing Endogeneity: In econometric modeling, endogeneity (e.g., due to omitted

variables, simultaneity, or selection bias) poses a significant challenge to causal infer-
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ence. By modeling the underlying structural equations through the causally constrained

flow, GCMs offer a framework that can inherently account for and mitigate issues of

endogeneity, provided the causal graph is correctly specified or learned.

In summary, Generative Causal Models mark a significant theoretical advancement

that promises to bridge the gap between powerful generative modeling techniques and

the rigorous demands of causal inference. Their capability to generate causally coherent

data, simulate interventions, and support counterfactual reasoning positions them as an

indispensable tool for future econometric research and evidence-based policy formulation,

especially in increasingly data-rich and high-dimensional environments.

6 Conclusion

This paper introduces a novel theoretical framework for Generative Causal Models (GCMs),

integrating the advanced generative capabilities of Flow Matching (FM) with the rigorous

principles of causal inference based on Directed Acyclic Graphs (DAGs). We have demon-

strated how to construct a Causally Constrained Flow Matching (CCFM) objective that

ensures the generated data not only approximates observed distributions but also strictly

adheres to predefined causal structures. Our theoretical contributions include proving

the existence of a causally consistent target vector field and establishing the convergence

of the learned vector field to this optimal target, thereby guaranteeing the causal fidelity

of the generated samples.

Furthermore, we extended the GCM framework to accommodate interventional sce-

narios through **Interventional Causally Constrained Flow Matching (I-CCFM)**, en-

abling the accurate generation of data from post-interventional distributions P (V |do(S =

s)). We provided theoretical guarantees for the convergence of I-CCFM and derived

propositions for approximation error bounds, delineating the factors influencing the fi-

delity of generated interventional and counterfactual data, particularly with respect to

network capacity and causal graph complexity. This systematic integration provides a

powerful new tool for robust causal effect estimation and policy simulation.
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The implications of GCMs for econometrics and related fields are substantial. By of-

fering a principled method for generating synthetic data that respects causal relationships,

GCMs can enhance privacy-preserving data sharing and augment datasets for causal in-

ference tasks. More profoundly, they pave the way for a generative approach to causal

discovery where the fidelity of interventional sample generation can serve as a metric

for evaluating and refining hypothesized causal graphs, especially in high-dimensional

settings where traditional methods often falter. For policy analysis, GCMs provide a

scalable and interpretable platform for simulating the effects of interventions and reason-

ing about counterfactuals, offering a unified and theoretically grounded methodology for

evaluating policy levers and understanding heterogeneous treatment effects.

While our framework lays a strong theoretical foundation, several promising avenues

for future research emerge. First, rigorous empirical validation on diverse real-world

and synthetic datasets would be crucial to demonstrate the practical scalability and

performance of GCMs in various econometric applications. This would involve design-

ing specific benchmarks for evaluating causal consistency in generated data. Second,

further exploration into unobserved confounding and latent variable models within the

GCM framework is warranted, potentially integrating techniques from variational au-

toencoders or latent force models to infer unobserved confounders and generate more

robust causal insights. Third, extending GCMs to dynamic causal models and time-

series data, incorporating concepts like Granger causality or dynamic Bayesian networks,

would significantly broaden their applicability to economic processes evolving over time.

Finally, developing more sophisticated **causal discovery algorithms** that leverage the

generative capabilities of GCMs for iterative graph learning and refinement represents a

compelling direction, moving beyond the assumption of a known DAG.

In conclusion, Generative Causal Models represent a significant conceptual and method-

ological advancement at the intersection of generative modeling and causal inference. By

providing a unified approach to data generation and causal reasoning, GCMs promise to

reshape how economists and statisticians approach the fundamental challenges of under-

standing, predicting, and intervening in complex systems.
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8 Detailed Proofs and Supplementary Material

This appendix provides the full, detailed proofs for the theorems and propositions outlined

in the main body of the paper. It also includes supplementary material that elaborates

on specific technical aspects of the Generative Causal Models (GCMs) framework, par-

ticularly concerning the construction of causally consistent paths and the explicit forms

of the target vector fields under various causal interventions.
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A.1. Overview of Appendix Contents

A.2. Proof of Theorem 3.1 (Existence of a Causally Consistent Target Vector

Field): This section details the formal construction of the unique optimal vector field

v∗(xt, t;G) that ensures the generated distribution p1(x) is consistent with the given Di-

rected Acyclic Graph (DAG) G. The proof will elaborate on how the causal factorization

of the target distribution p1(x;G) translates into properties of the underlying probability

flow and its corresponding vector field.

A.3. Proof of Theorem 3.2 (Convergence of Learned Vector Field): Here,

we provide a rigorous proof for the convergence of the learned vector field vϕ(x, t) to

the causally consistent target vector field v∗(x, t;G) when optimizing the Causally Con-

strained Flow Matching (CCFM) objective. This section will rely on principles from

optimal transport theory and the stability analysis of neural ODEs, demonstrating how

the L2 objective minimizes the discrepancy between the learned and true causal flows.

A.4. Proof of Theorem 4.1 (Convergence of Interventional Flow Matching):

This section extends the convergence guarantees to the interventional setting. We will

formally prove that the Interventional Causally Constrained Flow Matching (I-CCFM)

objective leads to a learned vector field vϕ(x, t) that converges to the optimal target vector

field v∗(xt, t;Gdo(S)) for a specific intervention do(S = s). The proof will detail the role of

the truncated product formula in defining the true interventional data distribution and

how this guides the Flow Matching process.

A.5. Proof of Proposition 4.2 (Approximation Error Bound): This section

will provide the full derivation of the theoretical bounds on the approximation error be-

tween the true interventional distribution p
do(S=s)
1 (x) and the distribution pϕ1(x) generated

by our I-CCFM. The proof will leverage results from the theory of ordinary differential

equations (ODEs), specifically relating the distance between vector fields to the distance

between the corresponding probability distributions, and will elaborate on how factors

like network capacity and graph complexity influence these bounds.
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A.2. Proof of Theorem 3.1 (Existence of a Causally Consistent

Target Vector Field)

Theorem 3.1: Given a target data distribution p1(x) that is causally consistent with a

Directed Acyclic Graph (DAG) G, i.e., p1(x) =
∏n

i=1 p1(xi|PaG(xi)), and a base distri-

bution p0(x) (e.g., N (0, I)), there exists a unique target vector field v∗(xt, t;G) such that

if vϕ = v∗, the probability flow generated by v∗ starting from p0 converges to p1, and the

generated samples x1 ∼ p1 retain the causal factorization dictated by G.

Proof:

Let X0 ∼ p0(x0) be a random variable from the base distribution. Let X1 ∼ p1(x1;G)

be a random variable from the target data distribution, which is *assumed to be causally

consistent with the DAG G*. This means p1(x1;G) explicitly factorizes according to the

causal graph G:

p1(x1;G) =
n∏

i=1

p1(x1,i|PaG(x1,i)),

where x1,i is the i-th component of the vector x1, and PaG(x1,i) denotes the values of the

parents of X1,i as defined by the graph G.

We consider a simple linear interpolation path between X0 and X1:

Xt = (1− t)X0 + tX1 for t ∈ [0, 1].

This path defines a continuous sequence of probability distributions pt(xt) for xt ∈ Rn.

At t = 0, the distribution of X0 is p0(x0). At t = 1, the distribution of X1 is p1(x1;G).

1. Existence of the Target Vector Field: A fundamental result in the theory

of continuous normalizing flows and Flow Matching states that for any given pair of

distributions p0 and p1 and a chosen coupling (or path specification) between them, there

exists a unique, time-dependent vector field v∗(xt, t) that governs the probability flow

from p0 to p1 via an Ordinary Differential Equation (ODE). Specifically, for the linear

path defined above, the optimal target vector field v∗(xt, t) is given by the conditional
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expectation (see Lipman et al., 2023, Theorem 1; Liu et al., 2023, Theorem 1):

v∗(xt, t) = EX0∼p0,X1∼p1(x1;G)

[
dXt

dt

∣∣∣Xt = xt

]
= EX0,X1

[
(X1 −X0)

∣∣∣(1− t)X0 + tX1 = xt

]
.

This expression provides an explicit construction for v∗(xt, t), thereby demonstrating its

existence. For v∗(xt, t) to be well-defined and unique for almost all (xt, t) within the

support of pt(xt), we require pt(xt) to be sufficiently smooth and non-zero. Given that

p0 is a continuous distribution (e.g., standard Gaussian) and p1(x1;G) is assumed to

be a well-behaved continuous distribution (e.g., admitting a smooth density), their linear

interpolation pt(xt) will also be continuous and sufficiently regular to ensure the existence

of the conditional expectation.

2. Uniqueness of the Target Vector Field: For a fixed initial distribution p0, a

fixed target distribution p1, and a specific choice of path (in this case, the linear interpo-

lation Xt = (1− t)X0+ tX1), the target vector field v∗(xt, t) as defined by the conditional

expectation is unique. This uniqueness stems directly from the definition of the Flow

Matching problem, where the objective is to find the vector field that optimally trans-

ports probability mass along the specified trajectories. Any other vector field would either

not perfectly follow the prescribed path or not lead to the correct target distribution.

3. Retention of Causal Factorization (Causal Consistency): The core of

ensuring causal consistency lies in our fundamental assumption: that the target data

distribution p1(x1;G) itself is *already causally consistent* with the DAG G. This means

p1(x1;G) can be factorized according to G’s structure.

The Flow Matching framework aims to learn a vector field vϕ that, when integrated,

transforms samples from p0 into samples from p1. If the learned vector field vϕ perfectly

matches the true optimal vector field v∗(xt, t;G), then the probability flow governed by v∗

will precisely map p0 to p1(x1;G). Since p1(x1;G) is defined to be causally consistent with

G, the samples generated by this ideal flow will inherently possess the causal dependencies

and conditional independencies specified by G.

The causal structure of G is encoded within p1(x1;G) through its factorization. The

definition of v∗(xt, t;G) as the expectation of (X1 − X0) conditioned on Xt implicitly
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captures this structure because X1 is sampled from p1(x1;G). Therefore, the dynamics

prescribed by v∗(xt, t;G) are tailored to lead to a distribution that factorizes according

to G at t = 1.

4. Convergence to p1: By definition, if the learned vector field vϕ is identical to

the optimal target vector field v∗(xt, t;G), then the solutions to the ODE:

dX̃t

dt
= v∗(X̃t, t;G)

with initial conditions X̃0 ∼ p0(x0), will be such that the distribution of X̃1 is exactly

p1(x1;G). This is a direct consequence of the Flow Matching paradigm: the entire purpose

of learning v∗ is to transport p0 to p1.

In summary, the existence of a unique target vector field v∗(xt, t;G) is guaranteed by

the mathematical foundations of Flow Matching. This vector field, when used to generate

data from p0, will inherently produce samples that are distributed according to p1(x1;G).

Since p1(x1;G) is *defined* as being causally consistent with G, the samples generated by

this exact flow will retain the specified causal structure. This establishes the theoretical

basis for our Causally Constrained Flow Matching framework.

□

A.3. Proof of Theorem 3.2 (Convergence of Learned Vector

Field)

Theorem 3.2: Under standard regularity conditions on the neural network parameter-

izing vϕ (e.g., sufficient capacity, smoothness) and assuming that the target distribution

p1(x;G) is well-behaved (e.g., smooth density, finite moments), the optimization of the

CCFM Objective ensures that vϕ(x, t) converges to the causally consistent target vector

field v∗(x, t;G) in an L2 sense. Consequently, the distribution pϕ1 generated by integrating

vϕ converges to p1(x;G), thus preserving the causal structure.

Proof:
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The Causally Constrained Flow Matching (CCFM) objective is given by:

min
ϕ

L(ϕ) = Et∼U(0,1),x0∼p0,x1∼p1(x1;G)

[
∥vϕ((1− t)x0 + tx1, t)− (x1 − x0)∥22

]
.

Let xt = (1− t)x0+ tx1. The random variable xt follows a distribution pt(xt), which is

the pushforward of the joint distribution p0(x0)p1(x1;G) through the linear interpolation

path. From Theorem 3.1, we know that there exists a unique causally consistent target

vector field v∗(xt, t;G) given by:

v∗(xt, t;G) = Ex0,x1∼p0×p1(x1;G)

[
(x1 − x0)

∣∣∣xt = (1− t)x0 + tx1

]
.

This v∗(xt, t;G) is the ground truth optimal vector field for transporting samples from

p0 to p1(x1;G) along the chosen linear path.

The CCFM objective is a least-squares problem in expectation. Specifically, it can be

rewritten as:

L(ϕ) = Et∼U(0,1),xt∼pt

[
∥vϕ(xt, t)− Ex0,x1 [(x1 − x0)|xt]∥22

]
,

where pt is the marginal distribution of xt = (1 − t)x0 + tx1 when x0 ∼ p0 and x1 ∼

p1(x1;G). This is because for any random variables A,B, we have E[∥A−B∥22] = E[∥A−

E[A|B]+E[A|B]−B∥22]. If B is the conditioning variable (here xt), and A is (x1−x0), then

the optimal Aopt = E[A|B]. Thus, the term Ex0,x1 [(x1 − x0)|xt] is precisely v∗(xt, t;G).

So the objective simplifies to:

L(ϕ) = Et∼U(0,1),xt∼pt

[
∥vϕ(xt, t)− v∗(xt, t;G)∥22

]
.

This is a standard regression problem where vϕ is trained to approximate v∗.

1. Convergence of vϕ to v∗: Under the stated regularity conditions, specifically:

Sufficient Capacity of vϕ: The neural network parameterizing vϕ is assumed to have

sufficient capacity (e.g., a universal approximator with enough hidden units) to approx-

imate the true vector field v∗(xt, t;G) arbitrarily well. This is a common assumption in
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the theoretical analysis of neural networks. Well-behaved p1(x;G) and p0(x): The

target and base distributions are assumed to have smooth densities and finite moments,

ensuring that v∗(xt, t;G) itself is a well-behaved function (e.g., continuous, bounded,

Lipschitz). This is standard for the existence of well-defined ODE solutions. Sufficient

Data/Optimization: Assuming access to a sufficiently large number of training sam-

ples (x0, x1) from p0×p1(x1;G) and a convergent optimization algorithm (e.g., stochastic

gradient descent with appropriate learning rates), the empirical expectation will converge

to the true expectation.

Under these conditions, minimizing L(ϕ) will drive vϕ towards v∗(xt, t;G) in an L2

sense, with respect to the distribution pt(xt). That is, as the training progresses and the

model’s capacity allows, we have:

∥vϕ − v∗∥2L2(pt)
= Et∼U(0,1),xt∼pt

[
∥vϕ(xt, t)− v∗(xt, t;G)∥22

]
→ 0 as ϕ → ϕ∗,

where ϕ∗ denotes the optimal parameters that minimize the objective. This means

vϕ(xt, t) converges to v∗(xt, t;G) in expectation over the path pt(xt).

2. Consequent Convergence of pϕ1 to p1(x;G): Once vϕ converges to v∗(x, t;G)

in L2, the final distribution generated by integrating vϕ from p0 will also converge to

p1(x;G). Consider the probability flow ODE generated by the learned vector field:

dXϕ
t

dt
= vϕ(X

ϕ
t , t), Xϕ

0 ∼ p0(x0).

Let pϕt denote the distribution of Xϕ
t . A key result in the theory of ODEs and generative

modeling states that if two vector fields are close in Lp norm, their corresponding flows

will also be close. Specifically, if ∥vϕ−v∗∥L2(pt) is small, then the resulting distributions pϕ1

and p1(x;G) will also be close in a suitable statistical distance (e.g., L2 distance between

densities, or integral probability metrics like MMD). This is formalized in Proposition

4.2.

For a sufficiently accurate approximation (i.e., ϵ is small in Proposition 4.2), the

generated distribution pϕ1 will be arbitrarily close to the true target distribution p1(x;G).
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Since p1(x;G) is by assumption causally consistent with G (as established in Theorem

3.1), the convergence of pϕ1 to p1(x;G) directly implies that the samples generated by

integrating vϕ will also effectively preserve the causal structure dictated by G.

Thus, the optimization of the CCFM objective guarantees that the learned generative

model accurately approximates the desired causally consistent data distribution.

□

A.4. Proof of Theorem 4.1 (Convergence of Interventional Flow

Matching)

Theorem 4.1: Given an interventional DAGGdo(S) and its corresponding post-interventional

distribution p
do(S=s)
1 (x) (assumed to satisfy regularity conditions), the optimization of the

I-CCFM Objective (4.1) ensures that the learned vector field vϕ(x, t) converges to the

optimal interventional target vector field v∗(x, t;Gdo(S)) in an L2 sense. Consequently,

the distribution pϕ1 generated by integrating vϕ from p0 converges to p
do(S=s)
1 (x), thereby

allowing for accurate generation of interventional data.

Proof:

The Interventional Causally Constrained Flow Matching (I-CCFM) objective is de-

fined as:

min
ϕ

Linterventional(ϕ) = E
t∼U(0,1),x0∼p0,x1∼p

do(S=s)
1 (x)

[
∥vϕ((1− t)x0 + tx1, t)− (x1 − x0)∥22

]
.

The crucial aspect of this objective is that the target samples x1 are now explicitly

drawn from the post-interventional distribution p
do(S=s)
1 (x). This distribution is itself

derived from the original causal graph G via the do-calculus, specifically by the truncated

product formula:

p
do(S=s)
1 (x) =

 ∏
Xj∈V \S

P (Xj|PaG(Xj))

 · I(xS = s),

where I(xS = s) is an indicator function ensuring that the intervened variables take on
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their fixed values s. This definition implies that p
do(S=s)
1 (x) is causally consistent with

the manipulated graph Gdo(S).

Let xt = (1−t)x0+tx1. Similar to the proof of Theorem 3.2, the optimal target vector

field v∗(xt, t;Gdo(S)) for this specific path and marginal distributions p0 and p
do(S=s)
1 (x) is

given by the conditional expectation:

v∗(xt, t;Gdo(S)) = E
x0∼p0,x1∼p

do(S=s)
1 (x)

[
(x1 − x0)

∣∣∣xt = (1− t)x0 + tx1

]
.

The existence and uniqueness of this optimal interventional target vector field follow

directly from the arguments laid out in the proof of Theorem 3.1, merely replacing p1(x;G)

with p
do(S=s)
1 (x). Since p

do(S=s)
1 (x) is assumed to satisfy regularity conditions (e.g., smooth

density, finite moments), v∗(xt, t;Gdo(S)) will also be well-defined and unique for the

chosen linear path.

The I-CCFM objective can then be re-written as an L2 regression problem:

Linterventional(ϕ) = E
t∼U(0,1),xt∼p

do(S=s)
t

[
∥vϕ(xt, t)− v∗(xt, t;Gdo(S))∥22

]
,

where p
do(S=s)
t is the marginal distribution of xt along the path defined by x0 ∼ p0 and

x1 ∼ p
do(S=s)
1 (x).

1. Convergence of vϕ to v∗(x, t;Gdo(S)): To prove the convergence of vϕ to

v∗(x, t;Gdo(S)), we rely on standard assumptions commonly made in the analysis of neural

network training and Flow Matching models:

Universal Approximation Capability: The neural network model vϕ is assumed to

have sufficient capacity (e.g., adequate number of layers and neurons) to act as a universal

approximator. This implies that vϕ can approximate the true, possibly complex, target

vector field v∗(x, t;Gdo(S)) to an arbitrary degree of accuracy.

Regularity of Target Vector Field: The optimal interventional vector field v∗(x, t;Gdo(S))

is assumed to be a sufficiently regular function (e.g., continuous, Lipschitz continuous)

over the domain of interest. This holds if p0 and p
do(S=s)
1 (x) are well-behaved distributions.

Sufficient Training Data: The training process has access to a sufficiently large
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number of independent and identically distributed (i.i.d.) samples (x0, x1) where x0 ∼ p0

and x1 ∼ p
do(S=s)
1 (x). This ensures that the empirical expectation used in stochastic

optimization accurately approximates the true expectation in the objective function.

Convergent Optimization Algorithm: The optimization algorithm (e.g., stochas-

tic gradient descent or its variants) is assumed to converge to the minimum of the objective

function, given appropriate learning rate schedules and batch sizes.

Under these standard conditions, the minimization of the L2 objective function Linterventional(ϕ)

will force the learned vector field vϕ(x, t) to converge to the true optimal interventional

target vector field v∗(x, t;Gdo(S)) in an L2 sense with respect to the path distribution

p
do(S=s)
t . That is:

∥vϕ − v∗∥2
L2(p

do(S=s)
t )

= E
t∼U(0,1),xt∼p

do(S=s)
t

[
∥vϕ(xt, t)− v∗(xt, t;Gdo(S))∥22

]
→ 0,

as the optimization converges to its minimum.

2. Consequent Convergence of pϕ1 to p
do(S=s)
1 (x): The convergence of the learned

vector field vϕ to the true target vector field v∗(x, t;Gdo(S)) directly implies the conver-

gence of the probability distribution generated by integrating vϕ to the target distri-

bution p
do(S=s)
1 (x). If we denote the flow generated by vϕ starting from Xϕ

0 ∼ p0 as

dXϕ
t

dt
= vϕ(X

ϕ
t , t), then its distribution at t = 1 is pϕ1(x). Similarly, let p∗t (x) be the distri-

bution generated by the optimal vector field v∗(x, t;Gdo(S)), with p∗1(x) = p
do(S=s)
1 (x).

The relationship between the proximity of vector fields and the proximity of their

generated distributions is well-established in the theory of ODEs. If ∥vϕ − v∗∥
L2(p

do(S=s)
t )

is small, then the resulting distributions pϕ1(x) and p
do(S=s)
1 (x) will also be close in a rele-

vant statistical distance (e.g., total variation distance, L2 distance between densities, or

Maximum Mean Discrepancy (MMD)). Proposition 4.2 further quantifies this relation-

ship.

Since the target distribution p
do(S=s)
1 (x) is, by its very definition, causally consis-

tent with the interventional graph Gdo(S), the convergence of pϕ1(x) to p
do(S=s)
1 (x) en-

sures that the samples generated by the I-CCFM framework accurately reflect the post-

interventional causal relationships.
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Thus, the optimization of the I-CCFM objective successfully trains a generative model

that can accurately simulate the effects of specific causal interventions, providing a pow-

erful tool for policy analysis.

□

8.1 A.5. Proof of Proposition 4.2 (Approximation Error Bound)

Proposition 4.2: Let vϕ be the learned vector field and v∗ be the optimal target vector

field for a given intervention do(S = s). Assume v∗ is Lipschitz continuous with constant

Lv∗ . If ∥vϕ−v∗∥L2(pt) ≤ ϵ for some small ϵ > 0, then there exists a constant C (dependent

on the time horizon T = 1 and Lv∗) such that the L2 distance between the generated

density pϕ1 and the true interventional density p
do(S=s)
1 is bounded by:

∥pϕ1 − p
do(S=s)
1 ∥L2 ≤ C · ϵ.

Furthermore, the value of ϵ is influenced by:

1. Network Capacity: The universal approximation capabilities of neural networks

imply that ϵ decreases as the capacity (e.g., number of layers, neurons) of vϕ increases,

assuming sufficient data.

2. Causal Graph Complexity: The complexity of p
do(S=s)
1 itself, which can be

influenced by the graph structure (e.g., maximum in-degree, treewidth), affects the dif-

ficulty of approximation. Interventions on variables with many children or in densely

connected parts of the graph might lead to more complex conditional distributions, po-

tentially increasing ϵ for a fixed network capacity.

Proof:

LetX∗
t denote the true trajectory generated by the optimal vector field v∗(xt, t;Gdo(S))

starting from X0 ∼ p0:

dX∗
t

dt
= v∗(X∗

t , t;Gdo(S)), X∗
0 = X0.

The distribution of X∗
1 at t = 1 is p

do(S=s)
1 (x).
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Let Xϕ
t denote the trajectory generated by the learned vector field vϕ(xt, t) starting

from the same initial condition X0 ∼ p0:

dXϕ
t

dt
= vϕ(X

ϕ
t , t), Xϕ

0 = X0.

The distribution of Xϕ
1 at t = 1 is pϕ1(x).

1. Bounding the Divergence of Trajectories (using Gronwall’s Inequality):

Consider the difference between the true and learned trajectories starting from the same

X0. For any t ∈ [0, 1], we have:

Xϕ
t −X∗

t =

∫ t

0

[vϕ(X
ϕ
s , s)− v∗(X∗

s , s)]ds.

We can rewrite the integrand:

vϕ(X
ϕ
s , s)− v∗(X∗

s , s) = [vϕ(X
ϕ
s , s)− v∗(Xϕ

s , s)] + [v∗(Xϕ
s , s)− v∗(X∗

s , s)].

Taking the L2 norm and applying the triangle inequality:

∥Xϕ
t −X∗

t ∥2 ≤
∫ t

0

∥vϕ(Xϕ
s , s)− v∗(Xϕ

s , s)∥2ds+
∫ t

0

∥v∗(Xϕ
s , s)− v∗(X∗

s , s)∥2ds.

By the Lipschitz continuity of v∗ with constant Lv∗ (i.e., ∥v∗(x, t)− v∗(y, t)∥2 ≤ Lv∗∥x−

y∥2):

∥Xϕ
t −X∗

t ∥2 ≤
∫ t

0

∥vϕ(Xϕ
s , s)− v∗(Xϕ

s , s)∥2ds+ Lv∗

∫ t

0

∥Xϕ
s −X∗

s∥2ds.

Let e(t) = ∥Xϕ
t −X∗

t ∥2. Then, for any path from X0:

e(t) ≤
∫ t

0

∥vϕ(Xϕ
s , s)− v∗(Xϕ

s , s)∥2ds+ Lv∗

∫ t

0

e(s)ds.
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By Gronwall’s Inequality, for the deterministic version:

e(t) ≤
(∫ t

0

∥vϕ(Xϕ
s , s)− v∗(Xϕ

s , s)∥2ds
)
eLv∗ t.

Averaging over the initial samples X0 ∼ p0 and the time t ∼ U(0, 1), we have that the

expected L2 difference between trajectories is bounded. More precisely, for the expected

value of the L2 difference at t = 1:

E[∥Xϕ
1 −X∗

1∥2] ≤ C1Et∼U(0,1),Xϕ
t ∼pϕt

[∥vϕ(Xϕ
t , t)− v∗(Xϕ

t , t)∥2],

where C1 = eLv∗T (with T = 1 in our case). Note that the expectation in the theorem’s

assumption is over pt, the true path distribution from v∗. If pϕt is sufficiently close to

pt, then this bound holds. More formally, we can bound the distance using the given

condition. We are given ∥vϕ − v∗∥L2(pt) ≤ ϵ, which means Et∼U(0,1),xt∼pt [∥vϕ(xt, t) −

v∗(xt, t;Gdo(S))∥22] = ϵ2.

2. Relate Trajectory Error to Distribution Error: The closeness of trajectories

translates to closeness of distributions. For a smooth transformation governed by an

ODE, if the vector fields are close, their pushforward measures will also be close. A known

result (e.g., from density estimation or optimal transport literature for flow-based models)

relates the L2 distance between densities to the L2 distance between their corresponding

vector fields. For continuous flows that pushforward p0 to p1, if ∥vϕ − v∗∥L2(pt) ≤ ϵ, then

there exists a constant C2 such that the L2 distance between the final densities pϕ1 and

p
do(S=s)
1 is bounded:

∥pϕ1 − p
do(S=s)
1 ∥L2 ≤ C2 · ∥vϕ − v∗∥L2(pt),

where C2 depends on the time horizon T , the Lipschitz constant Lv∗ , and potentially

other properties like the inverse Lipschitz constant of the flow or the regularity of the

densities. Substituting the given condition, we obtain:

∥pϕ1 − p
do(S=s)
1 ∥L2 ≤ C2 · ϵ.
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Combining C1 and C2 into a single constant C = C1C2 gives the desired bound:

∥pϕ1 − p
do(S=s)
1 ∥L2 ≤ C · ϵ.

This establishes the first part of the proposition.

3. Factors Influencing ϵ: The error ϵ = ∥vϕ − v∗∥L2(pt) is the L2 approximation

error of the neural network vϕ to the true target vector field v∗. This error is influenced

by two primary factors:

Network Capacity: Neural networks are known as universal approximators. This

means that, given sufficient depth and width (i.e., capacity), a neural network can ap-

proximate any continuous function to an arbitrary degree of accuracy over a compact

set. Therefore, as the capacity of vϕ increases, its ability to approximate the true

v∗(xt, t;Gdo(S)) improves, leading to a smaller ϵ. This implicitly assumes that the training

process converges to a global optimum and that there is sufficient data to constrain the

approximation.

Causal Graph Complexity: The complexity of the true target vector field v∗(xt, t;Gdo(S))

is inherently tied to the complexity of the post-interventional distribution p
do(S=s)
1 (x),

which in turn is determined by the structure of the causal graph G and the intervention

do(S = s).

If G is simple (e.g., a chain or a star graph) or the intervention is simple (e.g., affect-

ing only an exogenous variable), the conditional distributions P (Xj|PaG(Xj)) and thus

p
do(S=s)
1 (x) might be relatively simple functions. In such cases, v∗ would also be relatively

simple, allowing vϕ to approximate it with a smaller ϵ using less capacity.

Conversely, if G is complex (e.g., dense, high maximum in-degree, or involves many

non-linear relationships), the conditional distributions can be highly intricate. For exam-

ple, variables with numerous parents will have complex conditional dependencies. When

an intervention occurs, the re-factored distribution p
do(S=s)
1 (x) can become significantly

more complex, requiring v∗ to capture these intricate relationships. A more complex v∗

necessitates a higher-capacity neural network to achieve a given ϵ, or for a fixed network

capacity, the approximation error ϵ will be larger. Properties like the treewidth of the
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graph, or the number and nature of causal paths, directly impact the complexity of the

underlying causal model and thus the functional form of v∗.

This proposition underscores the theoretical relationship between the learnability of

the vector field and the accuracy of the generated interventional distributions, providing

guidance on the required model complexity for accurate GCMs.

□
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